ITRS 2.0 - More Moore update

Mustafa Badaroglu mustafab@qti.qualcomm.com

On behalf of More Moore Focus Team – Device, Memory, Litho, Interconnect, FEP, Metrology TWGs

July 12, 2015 ITRS summer meeting, Stanford Univ., Palo Alto, CA, USA

Work in Progress – Not for Distribution More Moore FT, ITRS summer meeting, Stanford Univ., Palo Alto, CA, USA, July 11-12, 2015 1


ITRS 2.0 - More Moore Mission

Provide physical, electrical and reliability requirements for logic and memory technologies to sustain More Moore (PPAC: power, performance, area, cost) scaling for big data, mobility, and cloud (IoT and server) applications and

Forecast logic and memory technologies (15 years) in main-stream/high-volume manufacturing (HVM)

Cloud and mobile computing drive More Moore

- Device-interconnect tech should meet microserver and mobile computing needs
- Edge computing requires additional functionality for increased consumer value (e.g. motion processor, neural processor unit, etc)
- 2.5D integration to scale memory bandwidth / power and latency

Work in Progress – Not for Distribution

More Moore computational drivers

E----

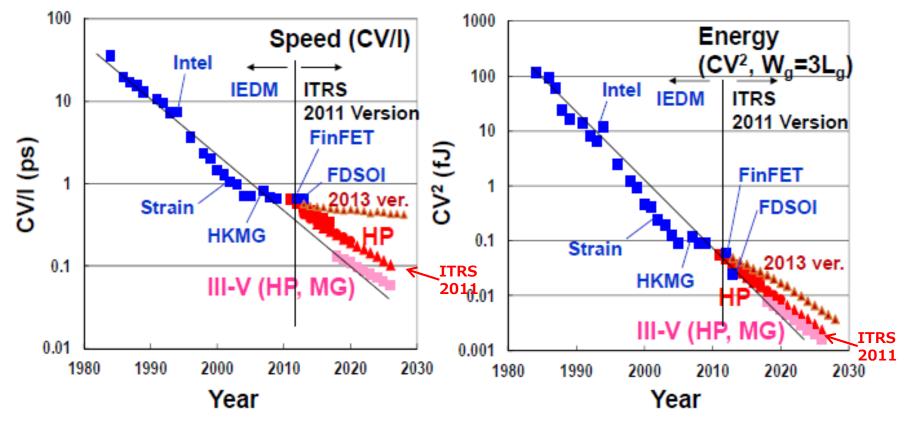
Enablers: Multi-core pr MPU, GPU, f 2.5D/3D inte Wide-IO for r	FPGA in single chip gration	Enablers: Heterogenous integration Massive parallelism – (many-core) Cognitive & probabilistic computing Logio-in memory Cloud computing Connectivity of everything Multi-thread applications Real-time reconfigurability Visually rich gaming & browsing HD streaming Data accessible everywhere/time	Location awareness & tracking Emotion/environment recognition HD-3D conferencing and streaming Real-time rendering Personal health-care			
PC	Internet	Multimedia & Mobile internet	Virtual reality and location awareness			
1990	2000	2010	2020			
100M+ units	IB+ units	10B+ units	100B+ units			
Source: Morg	an Stanley Research	,				

Work in Progress – Not for Distribution

Application KPIs and PPAC scaling for More Moore

· ····································
2 j
💆 🖳 😫 🧕
👲 🗉 🙆

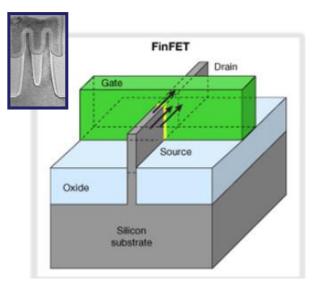
Data/compute servers

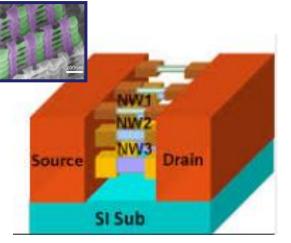

- KPI = More performance at iso power density
- Constraints = Thermal, energy budget
- Edge computing
 - KPI = More performance & functionality at iso power and cost
 - Constraints = Cost, battery, increased leakage in parallel HW
- Smart sensors
 - KPI = Reduced leakage and variability at near-Vt
 - Constraints = System form factor, cost, and security
 - More Moore platform for node-to-node PPAC value
 - Performance: >25-30% more fmax @ iso power
 - Power: >50% less energy / switching at given performance
 - Area: >50% area reduction
 - Cost: <25% wafer cost ~30% less cost for same function

TTRS

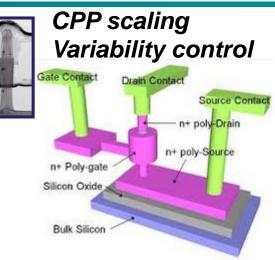
Work in Progress – Not for Distribution

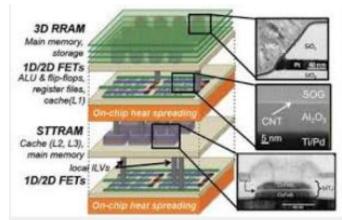
Performance saturates in conventional scaling


Saturated performance improvement trend, 2013 ITRS


Source ; Prof. Hiramoto, Tokyo Univ.

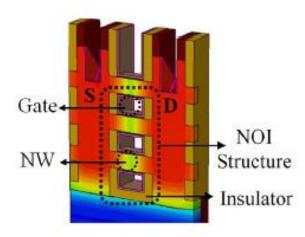
Work in Progress – Not for Distribution

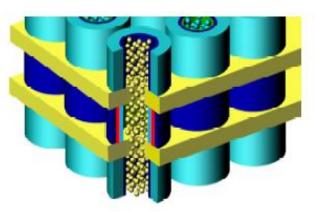

Device architecture evolution to scale CPP


finFET 2011-2019 Lgate/finwidth=3 Weff, SCE

Lateral GAA (gate-all-around) 2018-2024 Lgate/NWD=2 Scale Lgate ~ power reduction

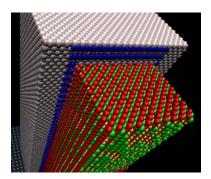
Vertical GAA 2022-2028 Lgate/NWD=2 Variability control, Rext




Monolithic 3D (M3D) 2024-beyond Lgate/NWD=2 Functional scaling

Work in Progress – Not for Distribution

LGAA and VGAA FEP and metrology challenges

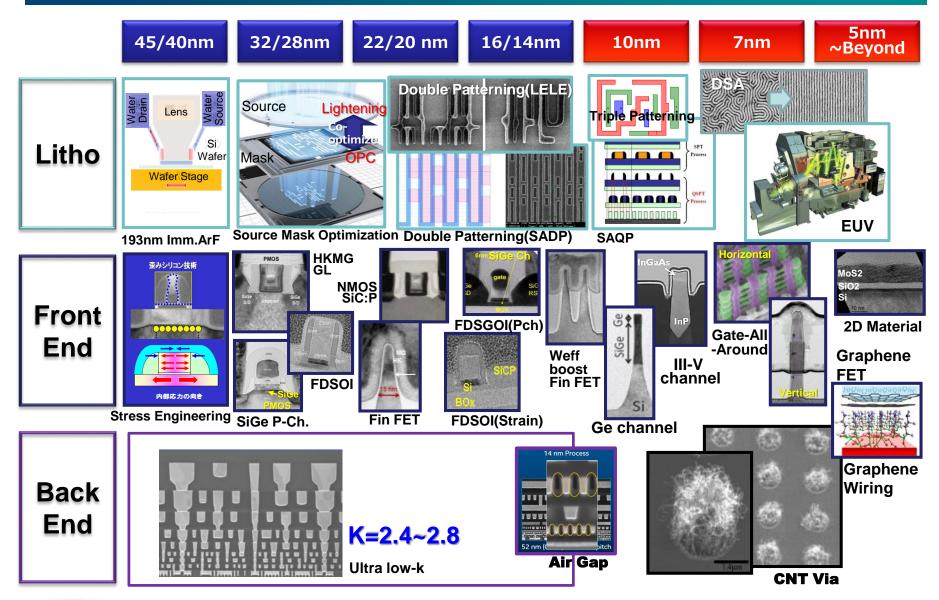


Vertical GAA or NW

Stacked lateral GAA or NW

S-G. Hur, Samsung

Kuhn, Intel, 2012


Stacked NW and GAA structures bring new FEP process challenges

- Conformality
- Integrity
- Reliability
- Controls
- 3D metrology for sub-10nm
- Defectivity

ALRS

Work in Progress – Not for Distribution Yield

Technology Roadmap Landscape

Work in Progress - Not for Deputtesy: Yuzo Fukuzaki - Sony Corporation

Main scaling focus & performance boosters

	H		200	n	1	<u>10 m</u>		
YEAR OF PRODUCTION	2015	2016	2018	2020	2022	2024	2026	2028
Logic device technology naming	P70M52	P52M36	P42M24	P32M16	P24M12	P24M12V1	P24M12V2	P24M12V3
Logic industry "Node Range" Labeling (nm)	"16/14"	"11/10"	"8/7"	"6/5"	"4/3"	"3/2.5"	"2/1.5"	"1/0.75"
Node production years	3	3	3	3	3	3	3	>3
Device structure options	finFET FDSOI	finFET FDSOI	finFET LGAA	finFET LGAA VGAA	VGAA, M3D	VGAA, M3D	VGAA, M3D	VGAA, M3D
DEVICE ARCHITECTURE & MODULES								
N-channel	Si	sSi	sSi, Ge	sSi, sGe, IIIV	sSi, sGe, IIIV	sSi, sGe, IIIV	sSi, sGe, IIIV	sSi, sGe, IIIV
P-channel	Si	Si,SiGe	Si,SiGe	Si,SiGe	Ge	Ge	Ge	Ge
DEVICE PERFORMANCE BOOSTERS								
Main performance booster	SCE finHeight Vt	SCE finHeight Vt	Parasitics finHeight	Parasitics finHeight	Low Vdd 3D	Low Vdd 3D	Low Vdd 3D	Low Vdd 3D
Scaling focus	Perf	Power	Power	Power	Function	Function	Function	Function
Transport scheme	DD	Quasi Ballistic	Quasi Ballistic	Ballistic	Ballistic TFET, JFET, NCMOS	Ballistic TFET, JFET, NCMOS	Ballistic TFET, JFET, NCMOS, Spin	Ballistic TFET, JFET, NCMOS, Spin

- Added new node naming nomenclature (e.g. P70M52) since pitch scaling is not directly representing node itself
- 2014-2018 (N14, N10) focus on SCE, Weff scaling through cell height reduction
- 2018-2022 (N7 and N5) focus on parasitics, Weff efficiency, DTCO
- 2022-2030 (N3 and beyond) focus on ultra low-Vdd and 3D functional integration

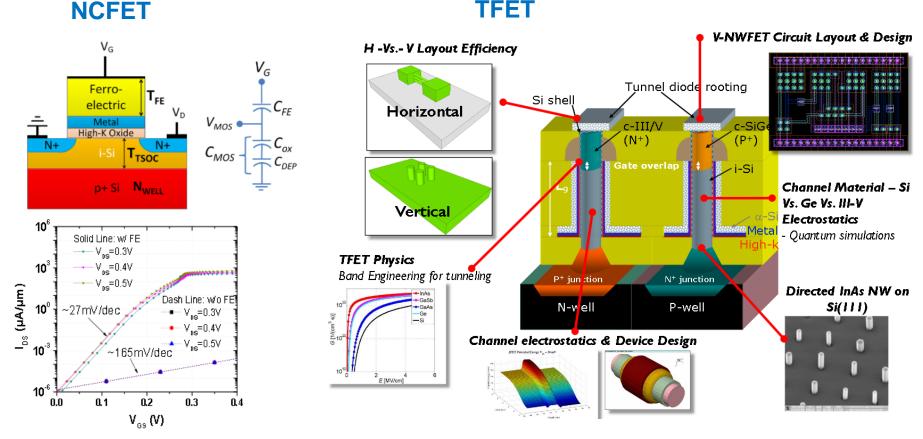
Work in Progress – Not for Distribution

Inflection (2018) - Lateral GAA transition

- Benefits
 - Strong short channel control high beneficial in loaded cells
 - Can use the finFET baseline as process starting point
- Technology challenges
 - Undercut control during channel formation
 - HKMG integration surrounding NW
 - Parasitic channel
 - Stressor to mobility transfer
 - Conformal deposition
- Design challenges
 - Self-heating
 - Enabling SoC components ESD, IO
 - Variability

Inflection (2022) - Vertical GAA transition

- Benefits
 - Strong short channel control high beneficial in loaded cells
 - No need for isolation
 - Reduced SRAM area
- Technology challenges
 - Etch control
 - HKMG integration surrounding NW easier compared to finFET
 - Bottom contact formation
 - Bottom junction engineering
- Device/Design challenges
 - Gate density
 - Same as lateral nanowire
 - 3D stdcell design & port access difficulties
 - Place & route

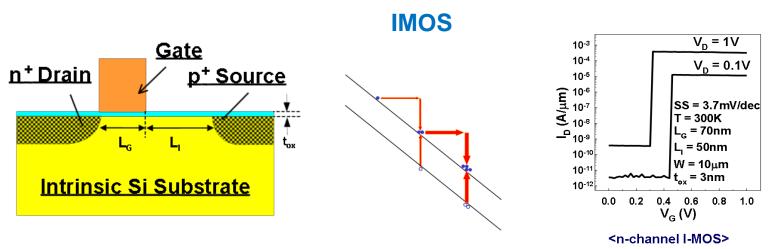

Inflection (2022) - monolithic-3D transition

- Benefits
 - Strong short channel control high beneficial in loaded cells
 - No need for isolation
 - Active devices in the interconnect
 - Ability to scale drive in the vertical direction
 - P-N separation across tuers
- Technology challenges
 - Same as vertical nanowire
 - Temperature budget
 - Channel growth
 - Low-temperature activation
- Device/Design challenges
 - New functions and architectures
 - Same as vertical nanowire
 - 3D stdcell design & port access difficulties
 - Less number of layers across tiers
 - Place & route

Work in Progress – Not for Distribution

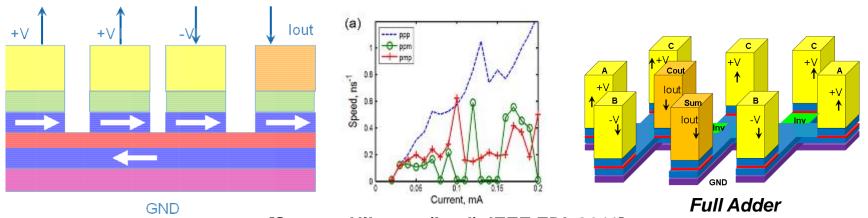
Lgate slow-down forcing alt. transport

TFET


[Source: Yeung (UCB), SISPAD 2012]

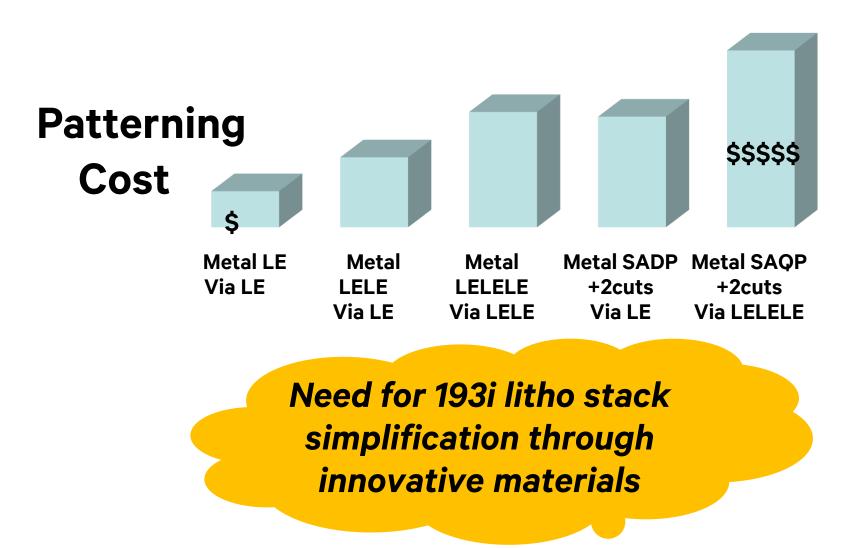
[Source: Thean (imec), ITF 2013]

Work in Progress – Not for Distribution


Other transport options

<n-channel I-MOS>

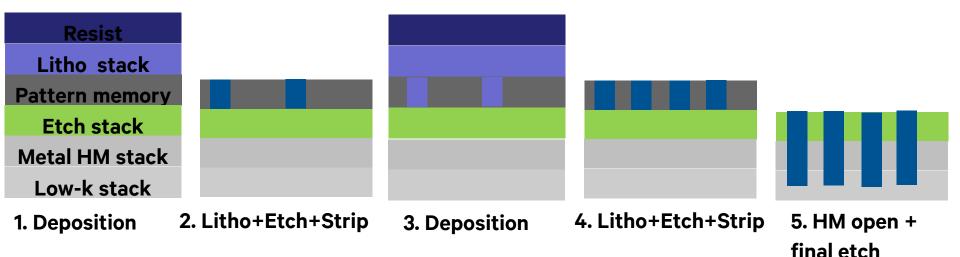
[Source: Gopalakrishnan (Stanford U.), IEDM 2002]

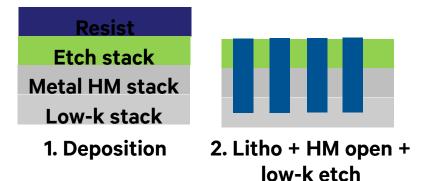

STMG

[Source: Nikonov (Intel), IEEE EDL 2011]

Work in Progress – Not for Distribution

193i multi-patterning cost explosion




Work in Progress – Not for DistributionMore Moore FT, ITRS summer meeting, Stanford Univ., Palo Alto, CA, USA, July 11-12, 201516

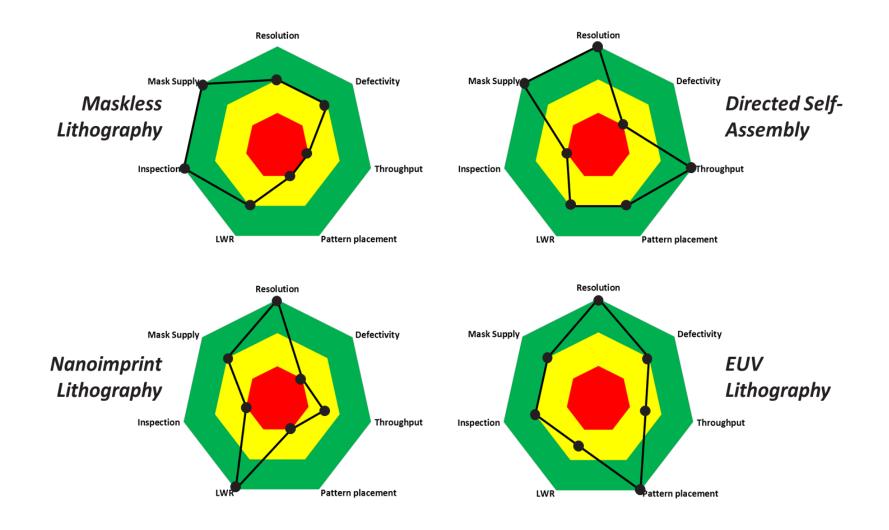
EUV - simplifying stack and saving steps

193i LELE metal patterning

EUV SE metal patterning

Pros

- Simplified stack
- Avoiding CDU and OVL seen in MPT
- Less # of depo, litho, etch steps


Cons

 Need improvements in resists for productivity and better LER

Work in Progress – Not for Distribution

Pros/cons of patterning approaches

Courtesy: Mark Neisser - Sematech

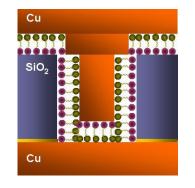
Work in Progress – Not for Distribution

<u>Interconnect – new barriers, conductors</u>

YEAR OF PRODUCTION	2015	2016	2018	2020	2022	2024	2026	2028
Logic device technology naming	P70M52	P52M36	P42M24	P32M16	P24M12	P24M12V1	P24M12V2	P24M12V3
Logic industry "Node Range" Labeling (nm)	"16/14"	"11/10"	"8/7"	"6/5"	"4/3"	"3/2.5"	"2/1.5"	"1/0.75"
Node production years	3	3	3	3	3	3	3	>3
Device structure options	finfet FdSOI	finFET FDSOI	finFET LGAA	finFET LGAA VGAA	VGAA, M3D	VGAA, M3D	VGAA, M3D	VGAA, M3D
INTERCONNECT TECHNOLOGY								
Conductor	Cu	Cu	Cu	Cu Silicides Carbon Collective Excitations	Cu Silicides Carbon Collective Excitations	Cu Silicides Carbon Collective Excitations	Cu Silicides Carbon Collective Excitations	Cu Silicides Carbon Collective Excitations
Number of wiring layers	10	11	12	13	15	17	19	21
Barrier metal - intermediate wire (tight pitch)	Ta(N)	Ta(N), Mn(N)	Ta(N), Mn(N)	Ta(N), Mn(N), SAM				
Barrier thickness - intermediate wire								
Inter-metal dielectrics (IMD) and k value - intermediate wire	SiCOH (2.55)	SiCOH (2.40- 2.55) Airgap (1.0)	SiCOH (2.20- 2.55) Airgap (1.0)	SiCOH (2.20- 2.55) Airgap (1.0) MOF, COF	2.55)	2.55)	SiCOH (2.00- 2.55) Airgap (1.0) MOF, COF	SiCOH (2.00- 2.55) Airgap (1.0) MOF, COF

Work in Progress – Not for Distribution

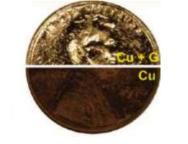
Enablers for resistance reduction

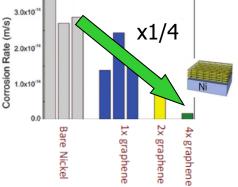

Ultrathin Cu Barrier Layers

(1) SAM(Self-assembled Monolayer)

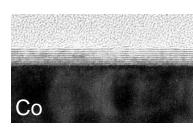
NH2(CH2)3Si (OCH3)3 Source: Arantxa Maestre Caro, Intel Corp. at IMEC

Alternative Conductors

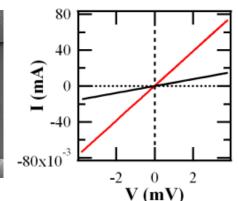



Proposals from ERM TWG

(2) Graphene barrier


Oxidation and corrosion resistance

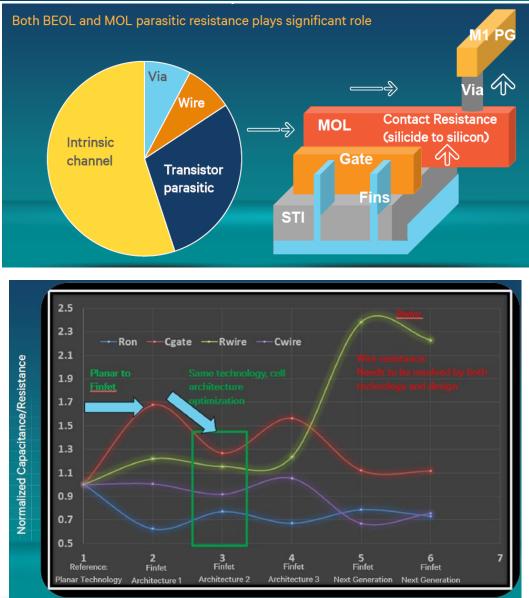
Chen et al., ACS Nano 5, 1321 (2011) Prasai et al., ACS Nano DOI: 10.1021/nn203507y (2011)

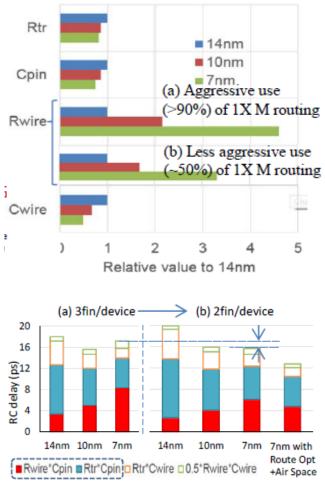


(3) Graphene

Kondo et al., IITC2013

(4) Other candidates

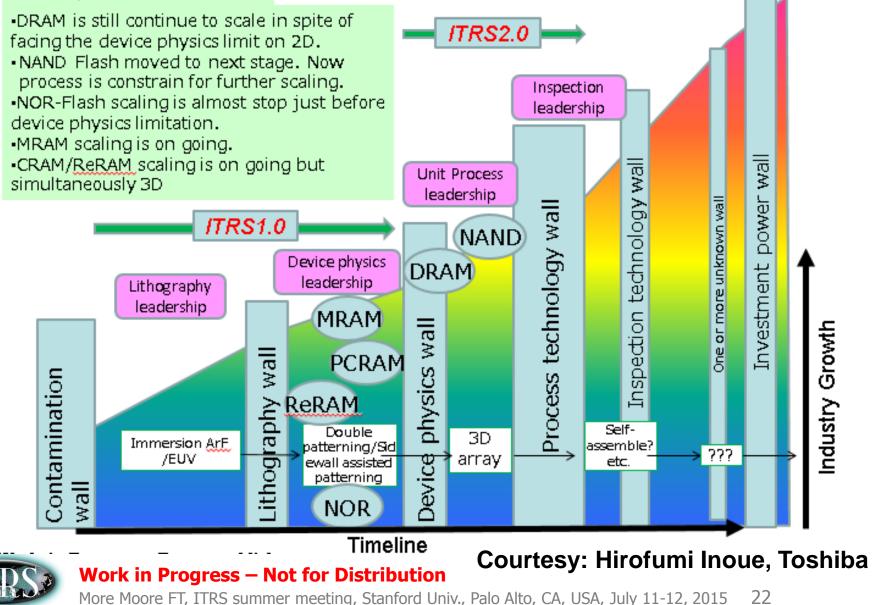

- CNT Interconnects
- CNT-Cu composites



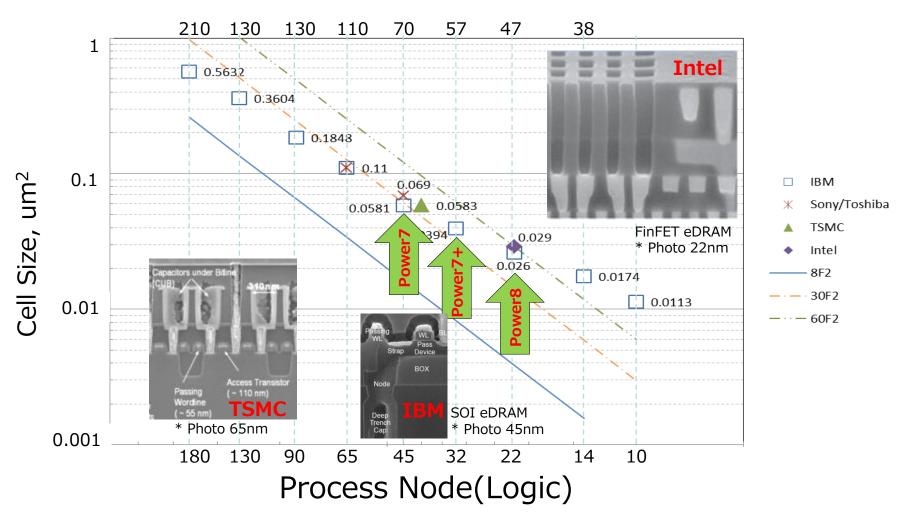
9.1 μΩcm at 6 μm length and 4 μm width Work in Progress – Not for Distribution More Moore FT, ITRS summer meeting, Stanford Univ., Palo Alto, CA, USA, July 11-12, 2015

20

Transistor drive needs to be optimized


Source: SC Song (Qualcomm), VLSI 2015

Work in Progressereel Joefzioglis (Qbalcomm), ICICDT 2015


Memory scaling wall image

Memory status 0n 2015

eDRAM size trend – MRAM potential >2019 for L4

eDRAM Half pitch(real F for cell design) = same F/Node definition as DRAM

Courtesy: Yuzo Fukuzaki, Sony Corp.

Work in Progress – Not for Distribution

Conclusions

- Mobile computing, big data, cloud (microserver, IoT) will continue to drive low power technology and design
- New materials needed to resolve the interconnect bottleneck but lack of disruptive solutions, more design solutions for mitigation
- Memory scaling key for the server market handling big data
- NVM scaling requires new memory technologies (e.g. MRAM, RRAM) and embedded memories for IoT
- More Moore ITRS2.0 focusing on requirements and mitigation approaches/gaps to sustain

