The missing memristor found

Dimitri Strukov, Gregory S. Snider, Daniele R. Stewart & Shirley Williams

Abstract

Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor, and the inductor. However, in 1974 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor).

Reference

- Memristor Fundamentals
- Memristor Modeling
- Dynamic Behavior of Interconnected Memristors
- Memristor-Based Logic Circuits
- Memristor Crossbar-based Nonvolatile Memory
- High-Density ALU-based on memristors, etc.
A model for transistor

\[L = f(s) \]
\[R_{e} = \frac{1}{n \rho_{e}} g(L) \]

\(T_{ox} \) = tunneling transmission coefficient
\(n \rho_{e} \) = effective density of electrons
\(L \) = tunnel barrier width
\(g(L) \) = voltage dependent parameter

A circuit model

\[V_{th} = \text{initial value of } V \]
\[L_{o} = \text{tunnel barrier width} \]
\[V_{th}, V_{t} = \text{left, right threshold voltages} \]
\(a, \beta, \gamma \) = parameters to model nonlinear \(V_{th} \)
\(m, n_{p} \) = fitting parameters
\(m_{r} \) = smoothing function's parameter

1. Set \(\text{model transistor plus minus} \) PARAMETERS:
2. \(\text{parameters values} \)
3. \(V_{th1} = 100 \quad V_{th2} = 10 \quad \text{threshold} = 1 \quad \text{voltage} = 1 \)
4. \(\beta \) = 10 \(\gamma \) = 1 \(\delta = 1 \) \(\gamma_{min} = 1 \quad \Delta = 1 \)
5. \(V_{th} = \alpha \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th1}) \}
6. \(\gamma \) = \(\gamma \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th2}) \}
7. \(\gamma_{min} \) = \(\gamma_{min} \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th2}) \}
8. \(\gamma_{max} \) = \(\gamma_{max} \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th1}) \}
9. \(\gamma_{max} \) = \(\gamma_{max} \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th2}) \}
10. \(\gamma_{min} \) = \(\gamma_{min} \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th1}) \}
11. \(\gamma_{max} \) = \(\gamma_{max} \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th2}) \}
12. \(\gamma_{min} \) = \(\gamma_{min} \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th1}) \}
13. \(\gamma_{max} \) = \(\gamma_{max} \text{ value} = \{ \text{at } \text{at } (V_{th} - V_{th2}) \}

(Finalized)

14. \(\text{Func } \text{for nonlinear threshold behavior} \)
15. \(\text{Func } f_{x} = \{ -\alpha \star (x - \gamma) \} \)
16. \(\text{Func } f_{y} = \{ \gamma \star (x - \gamma) \} \)
17. \(\gamma \text{ for smoothing function} \)
18. \(\gamma \text{ for threshold} \)
19. \(\gamma \text{ for threshold} \)
20. \(\gamma \text{ for threshold} \)
21. \(\gamma \text{ for threshold} \)
22. \(\gamma \text{ for threshold} \)
23. \(\gamma \text{ for threshold} \)
24. \(\gamma \text{ for threshold} \)
25. \(\gamma \text{ for threshold} \)
26. \(\gamma \text{ for threshold} \)
27. \(\gamma \text{ for threshold} \)
28. \(\gamma \text{ for threshold} \)
29. \(\gamma \text{ for threshold} \)
30. \(\gamma \text{ for threshold} \)
31. \(\gamma \text{ for threshold} \)
For example,

\[p = 2 \]
\[D = 3 \text{ nm} \]
\[\text{m} = 1 \text{ pm} \]
\[\varepsilon = 3 \times 10^6 \text{ V/m} \]
\[\text{m} = \{ 1000, 75, 0.1, 50, 49, 50, 0.6, 1.7 [\text{V}] \} \]

\[M(p) \text{ vs } V \]

With SPICE or a process simulator, various combinations of parameters have been studied.
Operation Steps

1. Start up
2. Apply inputs
3. Initialize state
4. Update state according to inputs
5. Output state

CMOS/Memristor Threshold Logic

\[f(x_1, x_2, \ldots, x_n) = \begin{cases} 1, & \text{if } \sum \frac{w_i}{\|w_i\|} \geq X_{\text{threshold}} \\ 0, & \text{otherwise} \end{cases} \]

Memristive Crossbar-Based Nonvolatile Memory

Advantages:
- Scalability
- Density
- Cost
- Compatibility
- Speed
- Energy Efficiency
- Anti-radiation hardness

D-RAM: FROM Flash (read) TO S-RAM (write)

DRAM Read Time: 80ns to 120ns

Write Time: 0.5ns to 1ns

Cell Times:
- Write: 1-10ns
- Read: 10ns to 20ns

Redox-based RAM (reduction-oxidation)

Anti-Fused memristive switch (AFM)

\[\begin{align*}
\text{Write} & : V_{\text{write}} \rightarrow \text{Redox} \\
\text{Read} & : \text{Redox} \rightarrow V_{\text{read}} \\
\text{Reset} & : V_{\text{reset}} \rightarrow \text{Redox} \\
\text{Set} & : \text{Redox} \rightarrow V_{\text{set}} \\
\end{align*} \]
- Metal-Semiconductor junction.
- Lower forward turn-on voltage.
- Steeper I-V curve
- Majority-carrier (Electron) device. Not like p-n diode using minority-carrier charge-storage effects.
- Higher cutoff frequency, reproducibility and ease of fabrication.
- Extaaxial and ion-implantation.
- Rectifying or non-rectifying (ohmic-contact)

No minority carrier storage!