

Fundamentals of VLSI

Slides by Adam Teman

Technology Scaling

Moore's Law

In 1965, Gordon Moore noted that the number of components on a chip doubled every 18 to 24 months.

He made a prediction that semiconductor technology will double its effectiveness every 18 months

OF THE NUMBER OF

Lecture 4: Scaling

Moore's Law 1971-2011

Lecture 4: Scaling

The VLSI Systems Center - BGU

Moore's Law Today (2012)

Intel Xeon E5-2600

- 32nm "Sandy Bridge"
- 8 Cores
- 32KB L1 Cache
- 256KB L2 Cache
- 416 mm²
- 2.2 Billion Transistors
- Introduced March 2012

Xilinx Virtex-7 FPGA

- 28nm 2.5D IC Stacking
- 416 mm²
- 6.8 Billion Transistors (World Record!)
- 2 million logic cells
- 12.5 Gb/s serial transceivers
- Introduced October 2011

Evolution in Memory Complexity

Lecture 4: Scaling

The VLSI Systems Center - BGU

Die Size Growth

Lecture 4: Scaling

The VLSI Systems Center - BGU

Moore was not always accurate

Increasing wafer size:

- More chips per wafer
- Less overhead due to round wafers

Reality today (2015): 12" Slowly pushing toward 15"

Cost per Transistor

- Does not include effect of rapidly increasing NREs
- Only valid for very high volume

Scaling...

The VLSI Systems Center - BGU

Goals of Technology Scaling

□ Make things cheaper:

- » Want to sell more functions (transistors) per chip for the same money
- » Build same products cheaper, sell the same part for less money
- » Price of a transistor has to be reduced

But also want to be faster, smaller, and lower power

Technology Scaling – Dennard's Law

□ Technology generation spans 2-3 years

□ Benefits of scaling the dimensions by 30% (Denard):

- » Double transistor density
- » Reduce gate delay by 30% (increase operating frequency by 43%)
- » Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency

□ Die size used to increase by 14% per generation

» Flattens out at 1-4cm² (mostly limited by yield issues)

Technology Scaling Models

- Predicting future developments and potentials
- Comparing circuits across different technologies

Dennard Scaling (Constant Field Scaling)

- In 1974, Robert Dennard of IBM described the MOS scaling principles that have accompanied us for forty years.
- As long as we scale all dimensions of a MOSFET by the same amount (S), we will arrive at better devices and lower cost, while maintaining a constant electric field

The VLSI Systems Center - BGU

Dennard (Full) Scaling for Long Transistors

Property	Sym	Equation Calculation		Scaling	Good?
Oxide Capacitance	C_{ox}	ε_{ox}/t_{ox}	$1/S^{-1}$	S	
Device Area	A	$W\cdot L$	$S^{-1} \cdot S^{-1}$	$1/S^{2}$	•••
Gate Capacitance	C_{g}	$C_{ox} \cdot W \cdot L$	$S \cdot S^{-1} \cdot S^{-1}$	1/ <i>S</i>	•••
Transconductance	K_n	$\mu_n C_{ox} W/L$	$S \cdot S^{-1} / S^{-1}$	S	°)
Saturation Current	I _{on}	$K_n V_{GT}^2$	$S \cdot S^{-2}$	1/ <i>S</i>	
On Resistance	R _{on}	V_{DD}/I_{on}	S^{-1}/S^{-1}	1	
Intrinsic Delay	t_{pd}	$R_{on}C_{g}$	$1 \cdot S^{-1}$	1/S	00
Power	P_{av}	$f \cdot C \cdot V_{DD}^2$	$S \cdot S^{-1} \cdot S^{-2}$	$1/S^{2}$	•••
Power Density	PD	P_{av}/A	S^{-2}/S^{-2}	1	

Lecture 4: Scali $L \propto S^{-1}, W \propto S^{-1}, t_{_{ox}} \propto S^{-1}, V_{_{
m DD}} \propto S^{-1}, V_{_{
m T}} \propto S^{-1}, N_{_{A}} \propto S^{-1}$

Dennard (Full) Scaling for Short Transistors

$V_{\rm DSat} = \xi_{\rm arrit} L$					1
	Sym	Equation	Calculation	Scaling	Good?
Oxide Capacitance	C_{ox}	\mathcal{E}_{ox}/t_{ox}	$1/S^{-1}$	S	
Device Area	A	$W \cdot L$	$S^{-1} \cdot S^{-1}$	$1/S^{2}$	•••
Gate Capacitance	Cg	$C_{ox} \cdot W \cdot L$	$S \cdot S^{-1} \cdot S^{-1}$	1/ <i>S</i>	••
Transconductance	K _n	$\mu_n C_{ox} W/L$	$S \cdot S^{-1} / S^{-1}$	S	•••
Saturation Current With velocity saturation	I _{on}	$K_n V K_{DSan} W_{GT}^2 - V_{DSa}$	$_{t}) S \cdot S $	1/S	
On Resistance	R _{on}	V_{DD}/I_{on}	S^{-1}/S^{-1}	1	
Intrinsic Delay	t _{pd}	$R_{on}C_{g}$	$1 \cdot S^{-1}$	1/ <i>S</i>	•••
Power	P_{av}	$f \cdot C \cdot V_{DD}^2$	$S \cdot S^{-1} \cdot S^{-2}$	$1/S^2$	
Power Density	PD	P_{av}/A	S^{-2}/S^{-2}	1	C

 $V_{GT} = (V_{gs} - V_T)$ at $L \propto S^{-1}, W \propto S^{-1}, t_{ox} \propto S^{-1}, V_{DD} \propto S^{-1}, V_T \propto S^{-1}, N_A \propto S$

But what if we want more speed?

• We saw that
$$t_{pd} \propto C_g \cdot V_{DD} / I_{on}$$

- We can aggressively increase the speed by keeping the voltage constant.
 - » Long channel devices:

$$I_{on} \propto K_n V_{GT}^2 \propto S \implies t_{pd} \propto S^{-1} \cdot 1/S = 1/S^2$$

□ This led to the *Fixed Voltage Scaling Model* which was used until the 1990s (V_{DD}=5V)

$$V_{GT} = \left(V_{gs} - V_T \right)$$

Systems Center

Moore's Law in Frequency

Frequency Trends in Intel's Microprocessors

Fixed Voltage Scaling

Property	<mark>Sym</mark>	Equation Calculation		Scaling	Good?
Oxide Capacitance	Cox	\mathcal{E}_{ox}/t_{ox}	$1/S^{-1}$	S	
Device Area	A	$W\cdot L$	$S^{-1} \cdot S^{-1}$	$1/S^{2}$	00
Gate Capacitance	Cg	$C_{ox} \cdot W \cdot L$	$S \cdot S^{-1} \cdot S^{-1}$	1/ <i>S</i>	
Transconductance	K _n	$\mu_n C_{ox} W/L$	$S \cdot S^{-1} / S^{-1}$	S	•••
Saturation Current	Ion	$K_n V_{GT}^2$	$S \cdot 1$	S	
On Resistance	Ron	$V_{\scriptscriptstyle DD}/I_{\scriptscriptstyle on}$	1/S	1/ <i>S</i>	
Intrinsic Delay	t_{pd}	$R_{on}C_{g}$	$S^{-1} \cdot S^{-1}$	$1/S^{2}$	•••
Power	P_{av}	$\overline{f \cdot C \cdot V_{DD}^2}$	$\overline{S^2 \cdot S^{-1}} \cdot 1$	S	*
Power Density	PD	P_{av}/A	S/S^{-2}	S^{3}	XX

Lecture 4: Scaline $V_{\rm DD} \propto 1, \ L \propto S^{-1}, \ W \propto S^{-1}, \ t_{ox} \propto S^{-1}, \ V_{\rm T} \propto S^{-1}, \ N_A \propto S$

Fixed Voltage Scaling – Short Channel

□ What happens under velocity saturated devices?

$$I_{on} \propto K_n V_{DSat} \left(\underbrace{V_{GT} - V_{DSat}}_{\text{Dominated}} \right) \propto S \cdot S^{-1} \cdot 1 = 1$$

So the on current doesn't increase leading to less effective speed increase.

$$t_{pd} \propto R_{on}C_g \propto 1 \cdot S^{-1} = 1/S$$

□ The power density still increases quadratically!

$$PD \propto fCV_{DD}^2 / A \propto S \cdot S^{-1} \cdot 1 / S^{-2} = S^2$$

Lecture 4: Scaling

 $V_{GT} = (V_{as} - V_T)$

Power density (2004 expectation)

What actually happened?

Power Trends in Intel's Microprocessors

Technology Scaling Models

□ Fixed Voltage Scaling

- » Supply voltages have to be similar for all devices (one battery)
- » Only device dimensions are scaled.
- » 1970s-1990s

□ Full "Denard" Scaling (Constant Electrical Field)

- » Scale both device dimensions and voltage by the same factor, S.
- » Electrical fields stay constant, eliminates breakdown and many secondary effects.
- » 1990s-2005

□ General Scaling –

- » Scale device dimensions by S and voltage by U.
- » Now!

- □ The off current is exponentially dependent on the threshold voltage. $I_{off} \propto e^{-V_T / n\phi_T}$
- □ In the case of *Full Scaling*, the leakage current *increases* exponentially as V_T is decreased!

Since the 90nm node, static power is one of the major problems in ICs.

ITRS

□ International Technology Roadmap for Semiconductors

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
L _{gate} (nm)	20	14	10	7	5
$V_{DD}(\mathbf{V})$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

How about Interconnect?

Wire Scaling

- We could try to scale interconnect at the same rate
 (S) as device dimensions.
 - » This makes sense for *local interconnect* that connects smaller devices/gates.
 - » But global interconnections, such as clock signals, buses, etc. won't scale in *length*.
- Length of global interconnect is proportional to *die* size or system complexity.
 - » Die Size has increased by 6% per year (X2 @10 years)
 - » Devices have scaled, but complexity has grown!

Nature of Interconnect

The VLSI Systems Center - BGU

Local Wire Scaling

□ Looking at local interconnect:

- » W, H, t, L all scale at 1/S
- » C=LW/t \rightarrow 1/S
- » R=L/WH →S
- » RC=1

So the delay of local interconnect stays constant.

□ Reminder – Full (Dennard) Scaling of transistors:

- » Ron=VDD/Ion α 1
- » tpd=RonCg α 1/S

So the delay of local interconnect still increases relative to transistors!

Local Wire Scaling – Full Scaling

□ What about fringe cap?

 $C_{pp} \alpha WL/H$ $C_{fringe} \alpha \sim L$ $R_w \tilde{\alpha} L/(WT)$ t_{pwire} α R_wC_w

 C_{pp} ' α 1/S C_{fringe} ' α 1/S R_w'α S t_{pwire}' const.

The VLSI Systems Center - BGU

Ő.

Local Wire Scaling - Constant Thickness

□ Thickness wasn't scaled!

Local Wire Scaling – Interwire Capacitance

□ Without scaling height, coupling gets much worse.

 $C_{pp,side} \alpha LT/D$

 $C_{pp,side}$ ' const.

- C_{pp,side}/Length increases
 → Crosstalk, coupling issues get worse
- Aspect ratio limited eventually have to scale T
 - Different metal layers have different T

Global Wire Scaling

□ Looking at global interconnect:

- » W, H, t scale at 1/S
- » L doesn't scale!
- » C=LW/t \rightarrow 1
- » R=L/WH \rightarrow S²
- » RC=S² !!!

Long wire delay increases quadratically!!!

□ And if chip size grows, *L* actually increases!

Global Wire Scaling – Constant Thickness

Leave thickness constant for global wires

 $R_w \check{\alpha} L/(WT)$ $t_{pwire} \alpha R_w C_w$ R_w'α S t_{pwire}'αS

Very bad: wire delay S² worse than gates

□ So whereas device speed increases with scaling:

- » Local interconnect speed stays constant.
- » Global interconnect delays increase quadratically.
- □ Therefore:
 - » Interconnect delay is often the limiting factor for speed.
- □ What can we do?
 - » Keep the wire thickness (*H*) fixed.
 - » This would provide 1/S for local wire delays and S for constant length global wires.
 - » But fringing capacitance increases, so this is optimistic.

□ What is done today?

- » Low resistance metals.
- » Low-K insulation.
- » Low metals (M1, M2) are used for local interconnect, so they are thin and dense.
- » Higher metals are used for global routing, so they are thicker, wider and spaced farther apart.

Technology Strategy Roadmap

When will Moore's Law End?

Lecture 4: Scaling

The VLSI Systems Center - BGU

Further Reading

- "The International Technology Roadmap for Semiconductors" <u>www.itrs.net</u>
- "The Impact of Dennard's Scaling Theory", SSCS Magazine, Winter 2007 <u>http://www.ieee.org/portal/cms_docs_societies/sscs/PrintEditions/200701.pdf</u>
- J. Rabaey, "Digital Integrated Circuits" 2003, Chapters 1.1, 3.5, 4, 5.6,
- □ E. Alon, Berkeley *EE-141*, Lectures 1, 17 (Fall 2009) <u>http://bwrc.eecs.berkeley.edu/classes/icdesign/ee141_f09/</u>
- □ B. Nicolic, Berkeley EE-241, Lectures 1-5 (Spring 2011) <u>http://bwrc.eecs.berkeley.edu/classes/icdesign/ee241_s11</u>

