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Abstract. A fully analytical MOS transistor model dedicated to the design and analysis of low-voltage, low-current
analog circuits is presented. All the large- and small-signal variables, namely the currents, the transconductances,
the intrinsic capacitances, the non-quasi-static transadmittances and the thermal noise are continuous in all regions
of operation, including weak inversion, moderate inversion, strong inversion, conduction and saturation. The same
approach is used to derive all the equations of the model: the weak and strong inversion asymptotes are first derived,
then the variables of interest are normalized and linked using an appropriate interpolation function. The model
exploits the inherent symmetry of the device by referring all the voltages to the local substrate. It is shown that the
inversion charge Q;,  is controlled by the voltage difference Vp — V,,;,, where V., is the channel voltage, defined
as the difference between the quasi-Fermi potentials of the carriers. The pinch-off voltage Vp is defined as the
particular value of V., such that the inversion charge is zero for a given gate voltage. It depends only on the gate
voltage and can be interpreted as the equivalent effect of the gate voltage referred to the channel. The various modes
of operation of the transistor are then presented in terms of voltages Vp — Vs and Vp — V. Using the charge
sheet model with the assumption of constant doping in the channel, the drain current 7 is derived and expressed
as the difference between a forward component /r and a reverse component [g. Each of these is proportional to
a function of Vp — Vg, respectively Vp — Vp, through a specific current /5. This function is exponential in weak
inversion and quadratic in strong inversion. The current in the moderate inversion region is then modelled by using
an appropriate interpolation function resulting in a continuous expression valid from weak to strong inversion. A
quasi-static small-signal model including the transconductances and the intrinsic capacitances is obtained from an
accurate evaluation of the total charges stored on the gate and in the channel. The transconductances and the intrinsic
capacitances are modelled in moderate inversion using the same interpolation function and without any additional
parameters. This small-signal model is then extended to higher frequencies by replacing the transconductances
by first order transadmittances obtained from a non-quasi-static calculation. All these transadmittances have the
same characteristic time constant which depends on the bias condition in a continuous manner. To complete the
model, a general expression for the thermal noise valid in all regions of operation is derived. This model has
been successfully implemented in several computer simulation programs and has only 9 physical parameters, 3 fine
tuning fitting coefficients and 2 additional temperature parameters.
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synthesis, to detailed expressions for precise computer
simulation. The model must include a minimal num-

1. Introduction

The performance of analog circuits strongly depends
on how the characteristics of the transistors are ex-
ploited and mastered. Analog designers therefore need
a model of the MOS transistor that is suited not only
to final numerical circuit simulation but also to the cre-
ative task of exploring new circuits. This model must
therefore provide several coherent hierarchical levels,
from simple analytical expressions to support creative

ber of independent parameters, all strongly based on
physics, in order to keep track of correlations with tem-
perature and process variations.

Analog designs often exploit the functional and
structural source-drain symmetry of the transistor. A
good model for analog must therefore respect this sym-
metry. Last and most important is the need to adapt the
model to low-voltage and low-current circuits. The
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Fig. 1. Cross-section of an idealized n-channel MOS transistor and the corresponding symbol. All voltages are referred to the local p-type

substrate.

Table 1. Definitions used in the model.

Symbols Description Units
q Elementary charge A-s
Ur=(k-T)/q Thermodynamic voltage Vv
n; Intrinsic carrier concentration of Si m3
Ess Enx Dielectric constant of Si and SiO, F/m
C,. = €ox/tox Gate oxide capacitance per unit area F/m?
Noub Doping concentration of substrate m™3
®r = Ur - In(Ngup/ 1) Fermi potential in the substrate 14
Vig Flat-band voltage |4
Y, ¥ =W(y=0) Electrostatic potential and surface potential Vv
Ven = ¢ — ¢p = ¢ — $r  Channel potential Vv
0l Mobile inversion charge per unit area (A-s5)/m?
Un Mobility of electrons in the channel m2/(V -s)

model must therefore describe the behavior of the tran-
sistor in a continuous manner from very low currents
(weak inversion or subthreshold operation) to large cur-
rents.

This paper reports the results of a long and evolu-
tionary coordinated effort to meet these goals [2], [3],
[4], [12], [19], [20].

2. Large-Signal Model Formulation
2.1. Definitions
Fig. 1 shows the cross-section and the corresponding

symbol of an n-channel MOS transistor. In order to ex-
ploit the intrinsic symmetry of the device in the model,

the source voltage Vs, the gate voltage V; and the drain
voltage Vp are all referred to the local substrate. This is
not the convention adopted for SPICE models for which
all potentials are referred to the source electrode. The
definitions of the symbols used to derive this model are
presented in Table 1.

The surface potential W is defined as the electro-
static potential ¥ at the semiconductor surface (y = 0)
and the Fermi potential ® f as the quasi-Fermi poten-
tial of the majority carriers. The channel potential V.,
which depends on the position along the channel, is
defined as the difference between the quasi-Fermi po-
tential of the carriers forming the channel ¢, and the
quasi-Fermi potential of the majority carriers ¢,. Since
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Q’,, Fixed interface charge

Inversion layer charge
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Fig. 2. Charges appearing across the MOS structure.

the current density of majority carriers (holes in the
case of an n-channel transistor) is assumed to be negli-
gible in the whole structure, the quasi-Fermi potential
of majority carriers ¢, is equal to the Fermi potential

V. this characteristic is fixed
1B for a given technology and
a given type of transistor

this limit
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Fig. 3. Representation of the strong inversion threshold voltage V7

and the mobile charge Q; v versus the channel potential V, for a

given gate voltage Vg [6] [5].

& and thus the channel potential is simply equal to
the difference V., = ¢, — ©F. This channel potential
represents the disequilibrium in electron distribution
produced by the source and the drain voltages.

2.2. Inversion Charge in Strong Inversion and
Pinch-Off Voltage Definition

The different charges appearing across the MOS struc-
ture are represented in Fig. 2. The gate charge Qy; is
balanced by the fixed charge Q) trapped at the Si-S5i0,
interface, the inversion charge Q and the depletion
charge Q.

The mobile charge density Q;,, can be calculated
as a function of ¥ and V;, by integrating Poisson’s
equation. In the inversion region, W, is much larger
than U7 and the mobile charge density Q},, simplifies
to [1], [2}:

Q;nv =V Cr/rx "V Ur ¢))

\L’ 2<DF VC;, W
UT Ur

A relation between W, and the gate voltage is obtained

inv
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by applying Gauss’ law:

Q;ﬂ!}
VG=VFB+‘ys+y'V\I’s*C_, 2
ox
where y is the substrate factor or body effect factor
defined as:

Vz'q'gs'Nsub

. 3

y =
The gate voltage can be calculated from the surface
potential by using equations (1) and (2).
In strong inversion, the surface potential ¥; becomes
a logarithmic function of the gate voltage and can thus
be considered independent of the gate voltage. It can
be approximated by a constant W + V., where ¥y =
2@+ several Ur. Expressing Q) as a function of
W, and Vg using Eqn. 2 and replacing W, by Wy 4+ V¢,
leads to an expression of the inversion charge per unit
area valid in strong inversion:
Qiny =—Cop - 1V6 = Vrg(Va)] )

where Vrp is the gate threshold voltage referred to the
local substrate and defined as:

Vig = Veg+Wo+ Vo +v - VW + Ve

Vio+Va +y- [\/ Wy + Ver — \/\I’o] (5

The threshold voltage Vrq is defined as the gate voltage

such as Q},, = 0 when the channel is at equilibrium
(Ver = 0):
VTO = VG S
QE’I’L':O
= Vrg =Veg+W+y V¥ (6)
V(‘h=0

The threshold voltage Vyp is plotted in Fig. 3 versus
the channel voltage for a given gate voltage according
to the representation originaily proposed by Memelink
[5], [6]. It is important to notice that the Vrp versus
Ve plot of Fig. 3 almost completely characterizes the
technology.

Fig. 3 also shows the inversion charge Q;, , which
for a given gate voltage becomes zero for a particu-
lar value of the channel potential Vp defined as the
pinch-off voltage. The relation between Vp and the
gate voltage is obtained from Eqn. 4 by setting Q,, to

&
I

Vraly,=v, 7N

VT0+VP+V'[\/‘~I’0+VP“\/‘I’_O]

Each value of the gate voltage corresponds to a different
value of the pinch-off voltage and thus the latter can
be expressed in terms of the gate voltage by simply
inverting Eqn. 7:

Ve = Vg —Vro—vy

. I:\/VG——VT()+( ‘-y0+%)2

e

The derivative of the gate voltage with respect to the
pinch-off voltage is defined as the slope factor n and is
given by:

dVe 2./ F Vs

Since Vp depends on Vg, the slope factor can also be
expressed directly as a function of Vg:

®

dVp
dVg

1
n
4

1 —
2- Vo = Vro + (4 + Vo)’

This expression is useful for evaluating n at a certain
operating point and for calculating the small-signal pa-
rameters presented in section 3.

For the values of y and ®F used in practice, the
pinch-off voltage is almost a linear function of the gate
voltage. Vp can thus be approximated by:

(10)

Vg — V.
v, = Yo — V1o
n(Vg)

where n(Vg) is evaluated from Eqn. 10.
Introducing the definition of the pinch-off voltage
given by Eqn. 8 into Eqn. 4 leads to:

!
Qinv =

(1n

—Cox Ve =Va tvy

(VT Vr =¥+ V)] 2
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Fig. 4. Inversion charge versus channel potential for a given gate voltage.

Eqn. 12 clearly shows that the pinch-off voltage has the
same effect as the channel potential but with an opposite
sign. The pinch-off voltage can thus be interpreted as
the equivalent effect of the gate voltage referred to the
channel. It is important to notice that all the above re-
lations have been developed assuming a uniform doped
substrate. However, present-day CMOS processes use
ion implantation in order to adjust the threshold volt-
ages of the n and p-type devices. To take the effect of
the implant into account, the relation between the gate
and the pinch-off voltage has to be modified resulting
in some additional parameters. There are several ways
to include the effect of non-uniform doping that are ex-
tensively discussed in the literature and so will not be
covered here [1], [7], [8], [9]. In the following deriva-
tion it will still be assumed that the doping is uniform.
The inversion charge Q,, given by Eqn. 12 has been
plotted versus the channel potential in Fig. 4 (curve b).
It can be compared to the result obtained by using the
complete implicit expression given by equations (1)
and (2) (curve a). Fig. 4 shows that Eqn. 12 over-

estimates the inversion charge, which will result in a
current slightly higher than that which would be pre-
dicted by the complete expression. Curve c represents
alinear approximation of the inversion charge Q;, ob-
tained by taking a first order Taylor series expansion of
Eqn. 12 with respect to V., evaluated at Vp:

8 Qiny

Qi = (Ve — Vp)

9 VCh Ven=Vp

—C,.-n-(Vp — Vi)

il

13)

This simple approximation, although better than curve
b still overestimates the charge and thus the current.
The fitting of curve a using Eqn. 13 but considering
parameters Vro, ¥ and Wy as three independent fit-
ting parameters instead of three correlated “physical”
parameters, greatly improves the approximation. In
the case of Fig. 4, this would essentially result in a
slightly higher value for V5o, moving the crossing point
of curve ¢ with the x-axis a little bit to the left. The
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Fig. 5. Surface potential versus pinch-off voltage.

approximation given by Eqn. 13 is thus a good com-
promise between precision and simplicity.

2.3. Inversion Charge in Weak Inversion

The inversion charge Q},, does not vanish abruptly
when V., reaches Vp, but decays smoothly as the chan-
nel leaves strong inversion as shown by curve a on
Fig. 4. For V,, somewhat larger than Vp, the channel
is in weak inversion and the inversion charge becomes
negligible with respect to the depletion charge due to
the ionized impurities. The relation between the sur-
face potential and the gate voltage is obtained from
Eqn. 2 by neglecting the Q;,, term and by introducing
the definition of Vpq:

Vo = Vio+ (¥ = Wo) + 7 - (V¥ — VW) (14)

The pinch-off voltage, which has originally been de-
fined in strong inversion, can also be used in weak
inversion to approximate the surface potential. Com-
paring Eqn. 14 to Eqn. 7 results in:

W, = W, + Vp (15)

Instead of representing the surface potential as a func-
tion of Vg — Vgp, as is generally the case, it can be
plotted versus the pinch-off voltage as shown in Fig. 5
for different channel potentials. As expected, the sur-
face potential varies linearly with respect to Vp up to
2®r + V.. For Vp larger than V., Fig. 5 shows that
indeed the surface potential is almost constant in strong
inversion. The choice of the value Wy is arbitrary and
depends on the gate voltage range. The surface poten-
tial can finally be expressed as:

_ Yy + Vp for: Vp < V., (weak inversion)
YT W+ Vy, for: Ve >V, (strong inversion)
(16)

In weak inversion the surface potential is smaller than
2® ¢+ V,;,. The exponential term appearing in the gen-
eral expression of the inversion charge given by Eqn. 1
is thus much smaller than W,/ Ur. The square root can
then be expanded into a first order Taylor series leading
to a simplified expression of the inversion charge:

y Y52~V
. UT .e ur

Q;nv = _C(,)xz\/—\lz
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Vp-Ven

R N (17)

where K, is a parameter that depends on the exact
value taken for Wy:

Yo-2¢p

Ky=m—1)-e vr (18)

2.4. Modes of Operation

The different modes of operation of the MOS transistor
can be defined according to the source and drain volt-
ages with respect to the pinch-off voltage, as illustrated
schematically in Fig. 6.

Symmetrical forward and reverse modes are possi-
ble, depending on the sign of V, — Vs. For Vs and Vp
both smaller than Vp , the channel is in strong inversion
from the source to the drain and the transistor is in the
conduction mode. If Vp is increased beyond Vp, the
drain end of the channel is pinched-off and the device
is in forward saturation mode. If Vs and Vp are both
larger than Vp, the whole channel is pinched-off. The
device operates in weak inversion as long as one of the
source or drain voltage is still close to Vp, but becomes
blocked if both of them are sufficiently larger than Vp.

If the drain or (and) the source junction is (are) for-
ward biased beyond a junction voltage V;, a bipolar
mode is superimposed on the MOS mode [12][13].

There is of course no abrupt limit between these var-
ious modes, but rather smooth transitions. In particular
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weak and strong inversion are separated by a region of
moderate inversion [1].

2.5. General Expression for the Drain Current

A general expression for the drain current that includes
both the diffusion and the drift mechanisms is given by

(TI[101(T1]:

dvm
Ip=W y (=Q}) —= (19)
dx

where it has been assumed that the mobility i, is con-
stant along the y axis. As shown in Fig. 7, the drain
current is then obtained simply by integrating Eqn. 19
from the source, where V., = Vs to the drain, where
V., = Vp. Assuming that the mobility is also inde-
pendent of x, this yields:

w=p [ [—Qénmn)

WAA

Vs

where:

, W
B=tn Co T 21)
The drain current can be decomposed into a forward
current I which depends only on the difference Vp —
Vs and a reverse current Ig which depends only on

/ weak inversion

»
= Ych

Vs Vp Vp

Fig. 7. Inversion charge versus the channel potential. The drain
current is proportional to the shaded surface.
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Vp - VD [11]
) A

Ip = B- [__&'wi__"_):l -dV,,
Vs C;x

=1Ip
Sforwardcurrent

-
7 ch
Vb Cnx
=1Ig
reverse current
= I — Iy 22)

Note that no assumption has been made on the mode
of operation of the transistor and so Eqn. 22 is valid in
all regions of operation including weak, moderate and
strong inversion.

2.6. Drain Currentin Strong and in Weak Inversion

The drain current in strong inversion is simply obtained
by integrating Eqn. 13 which leads to the following
expressions of the forward and reverse currents:

I 28 (Vp — Vs)? for: Vs < Vp
F= %0 for: Vg > Vp

np — V)2 for
Iz = { 5+ (Vp — Vp)* for: Vp < Vp 23)

0 for: Vp > Vp

The same integration can be done to obtain the current
in weak inversion:

Vp-Vg

Ir = Ky B-Uj-e o

Yp—Vp

Ig = Ky -B-Ut-e 7 (24)

All the expressions for the drain current are given in
Table 2. The current in reverse saturation is not shown,
but can be obtained by simply replacing Vs by Vp in the
expression valid in the forward saturation region. The
pinch-off voltage Vp can be evaluated from the gate
voltage by using the approximation given by Eqn. 11
where n is calculated using Eqn. 10, or by using the
complete expression given by Eqn. 8.

2.7. Drain Current Normalization and Interpola-
tion between Weak and Strong Inversion

Expresstons for the drain current have been derived in
the asymptotic modes of operation defined as weak and

strong inversion, but they are not valid in the moderate
inversion region. A model valid in all regions of op-
eration can be established from physical consideration
by evaluating the surface potential either by iteration
[1][14] or by using a better approximation than the sim-
ple constant used previously [15]. Unfortunately, these
models are generally complicated, give rise to numeri-
cal problems and are therefore not suitable for simula-
tion. An alternative is to use a so called semiempirical
model where the different regions of operation of the
device are described by different equations [16]{17].
These models represent a good compromise between
accuracy and complexity and therefore speed of simu-
lation. In any case, for the model to be acceptable to
a circuit simulator, the equations and their first deriva-
tives must be continuous in the whole domain of oper-
ation [12].

The model presented hereafter is obtained by prop-
erly interpolating the current between the two known
asymptotic regions, using an adequate continuous func-
tion. Before finding this interpolation function, the cur-
rent has to be normalized to obtain a relation between
the current and the voltages that is independent of the
transistor sizes and of the technological parameters. To
take into account the proportionality factors »n - 8 and
B - UZ that appear in the expressions of the current
valid respectively in strong and in weak inversion, the
specific current Is can be used:

Is=2-n-B-U? (25)

The specific current [y depends essentially onthe W/ L
of the device and on the mobility u,. As shown in
Fig. 8, it corresponds in fact to the cross-point of the
weak and strong inversion asymptotes of the normal-
ized source transconductance plotted versus the drain
current. Choosing I as the normalization current im-
plies:

Ky=2n (26)

From Eqn. 18, this corresponds to a certain value of W,
slightly greater than 2®g.

The voltages are simply normalized to the thermo-
dynamic voltage Ur:

= N

Up

]
&
Il
<
n,
I

The normalized current in weak and in strong inversion



Analytical MOS Transistor Model 91

Table 2. Drain current in strong and in weak inversion.

Mode Weak Inversion Strong Inversion
] Ky -B-Uz-e"r/lr Vs > Ve n~,8~[Vp——5——QV;V] Vs < Vp
Conduction ) [e*VS/UT _ eVD/UT] for: { Vp i Ve (Vp — V) for: Vo < Vp
Vs 2 Vp
VS > Vp
Forward ) el . npg TRy VsV
Saturation Ky-B-Up-e for: v KD‘Z :>PUT (VP = V)" for: Vp > Vp
. VS > Vp _ . Vs > Vp
Blocked 0 for: : Vo > Vi Vs =Vp 0 for: { V> Ve

can be expressed as:

I
7[—’ =i —i, = F(v, —v) — F(vp —vg) (28)
s

i =
where iy = Ip/Is is the forward normalized current
which is also defined as the inversion coefficient and
i, = Ir/Is is the reverse normalized current. Function
F (v) is the interpolation function, which should have
the following asymptotes:

12

2} for: 0

Fy = ) forv> 29)
e’ for: v« 0

A good and simple interpolation has originally been
proposed by H. Oguey and S. Cserveny [19][20} and
has been simplified in order to remove the additional
fitting coefficients:

F(v) = [In(1 + e"/*)]? (30

The forward and reverse normalized currents are then
given by:

ip = F,—v)=[in(1+ eL)]2

Fup — vg) = [ln (1+e”?—”")]2 31)

Iy
These functions can be conveniently inverted to express

the voltages in terms of the forward or reverse currents
as it is generally required in analog circuit design:

v, — Uy = 2oln<eﬁ—l>

vy —vg = 2-In (eﬁ - 1) (32)

A better interpolation function can be obtained by inte-
gration of the small-signal transconductance interpola-
tion function given by Eqn. 39. The detailed calculation
of the resulting interpolation function is presented in
Appendix Al.

3. Small-Signal Quasi-Static Model

3.1. Transconductances in Weak and in Strong
Inversion

The total change in the drain current due to small vari-
ations of the gate, source and drain voltages is given
by:

dlp
aVg

al
AV + —2

Alp =
Vs.Vp Vs

Ve.Vp
=8mg =—8ms

al
AV + =2

AV, 33
A D (33)

Vs. Vs

=8md

where gng, gms and gmq are respectively the gate,
source and drain transconductances. The correspon-
dence with the transconductances defined when refer-
ring all voltages to the source electrode are given here-
after:

_alp
&m = Vos Vi Vos = 8mg
alp
8mp = 3Vas _— = 8ms — 8mg — 8md
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alp This relation is true in saturation from weak to strong

8ds = = &md (34)

3Vps Vas.Vas

The value of the transconductances in strong and in
weak inversion can be calculated respectively from
Eqn. 23 and Eqn. 24. They are summarized in Ta-
ble 3. Source and gate transconductances in saturation
are proportional to the drain current when the transis-
tor is biased in weak inversion and proportional to the
square root of the drain current in strong inversion.

Since the variation of the pinch-off voltage is n times
smaller than the corresponding gate voltage variation
and the forward current depends only on the voltage
difference Vp — Vi, the gate transconductance in sat-
uration (i.e. for Iz = 0) is n times smaller than the
source transconductance:

alr

| _ _ 1 dlfr
8mglir=0 = Vo

v, n aVp

_ 1 ol
T on aVs

Vs

) _ s 5)
Ve n

inversion.

3.2. Transconductance Normalization and Interpo-
lation between Weak and Strong Inversion

In order to obtain an interpolation function that is inde-
pendent of the transistor’s size, the transconductances
in saturation can be normalized to their maximum value
which is reached in weak inversion. They can then be
written in terms of the normalized forward or reverse
current using the same interpolation function G(i):

gmg’n'UT gms'UT .
= =G
I I i)
md * U .
Bnd 2T~ GGp) (36)
Ig

Function G (i) should be continuous and have the fol-
lowing asymptotes:
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Table 3. Transconductances in strong and in weak inversion.

Strong Inversion

Weak Inversion

Conduction Forward Saturation
2-8-1
gme B (Vp— Vs) =22k Lo

8ms n',B'(Vp—VS)=,/2.n.ﬁ.[F n

B Ve—Vs)=v2-n-B-Ir i

8md n'ﬂ'(Vp—VD)zm

Iz
(0] o

for: i <« 1 (weak inversion)

1
G@) = 37
® { 1/4/i for: i > 1 (strong inversion) G

This function can be derived from the large-signal in-
terpolation function given by Eqn. 31:
Ur 0lf
Ir 3Vs

G(iy)

\7d

L i

lf avs

Us

1 dF@) 1-e i

- = (38)
Iy dv \/l—;

This function is plotted versus the forward normalized
current in Fig. 8. It can be compared to the exact result
obtained from the numerical evaluation of the inversion
charge and of the current as derived in Appendix A2.
It tends to overestimate the exact result in strong inver-
sion, while it underestimates in weak inversion. The
approximation error is less than 6% for y = 1V/V. A
better and simpler interpolation function is given by:

1
Glif) = (39)
ir+35-/ip+1

The error corresponding to this interpolation is less
than 3% for y ranging from 0.5V to 2J/V. Ttis
therefore better than the interpolation function given by
Eqn. 38. Due to its precision and inherent simplicity,
it has been chosen for the computer simulation model.
In order to obtain the large-signal current interpola-
tion function corresponding to the transconductances,
Eqn. 39 can be integrated to express the normalized
voltage as a function of the normalized current (cf. Ap-
pendix Al). Unfortunately, the resulting function is
rather complicated and cannot be inverted to express

the current in terms of the voltage. This has little con-
sequences in the case of computer simulation model
where the large-signal function can be tabulated. Fur-
thermore, in some circuit simulators the derivatives are
calculated numerically instead of using an analytic ex-
pression. In such a case, the use of a large-signal inter-
polation function derived from Eqn. 39 ensures a good
approximation of the transconductances.

3.3. Experimental Results

The gate and source transconductances of a long and
wide transistor (W = L = 100 pum) have been mea-
sured. The Ip/gme ratio is plotted versus the drain
current in Fig. 9a) for two different source-to-bulk volt-
ages Vs = Oand Vs = 2 V. Itis compared to the simple
analytical formulation derived from equations (36) and
(39):
I D n-U T

= 40
8mg G (lf) ( )

/ 1
= n-Ur- if+§-\/i7+1 (saturation)

Good agreement is observed between the experimental
and the analytical results. The variation of the Ip/gm,
ratio with the source voltage observed in Fig. 9a) at low
current, is due to a variation of the slope factor n. At
a fixed drain current, the pinch-off voltage follows the
source voltage, which causes the slope factor to vary.
The difference between the stope factor for Vs = 0
and Vg = 2 V is dominant in weak inversion and since
n tends to unity for large Vp (or Vi), the two curves
shown in Fig. 9a) merge in strong inversion.
Similarly, Fig. 9 b) shows the measured Ip/g;, ra-
tio, plotted versus the drain current for two different
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Fig. 9. (a) Saturation current to gate transconductance ratio versus drain current measured from weak to strong inversion.

gate voltages Vi = 1V and Vi = 4 V. A good agree-
ment is observed between the experimental data and
the analytical formula given by:

Ip Ur R B
=——=Ur-\Jif+=-ir+1 41
8ms G(lf) 4 ! 2 \/7

The difference between the Ip /g, ratio measured at
V¢ = 1 Vand Vg = 4 V that is observed at high
current is also caused by a change in the slope factor n.
For V1 > Vg2, the corresponding slope factor ny and
the specific current I5; are smaller than n, and Iy
respectively. This implies that for a given drain current
Ip, the Ip/gnm, ratio is larger for inversion coefficient
if] than for if2.

3.4.  Quasi-Static Model for the Intrinsic
Capacitances

The operation of the MOS transistor is mainly con-
trolled by the region between source and drain which
contains the inversion layer, the depletion region, the
oxide and the gate plate. This region constitutes the
intrinsic part, while the rest of the device is called the
extrinsic part and is responsible for parasitic effects.
Assuming quasi-static operation, the effect of external
time varying potentials can be analyzed by evaluating
the variation of the different charges present in the in-
trinsic part. For medium frequency, only the global
change of these charges is taken into account. In the
simple quasi-static model developed hereafter, the dis-
tributed nature of the coupling between the gate, the
inversion layer and the bulk will be ignored. A first-
order non-quasi-static model is presented in the next
section.

The dynamic behavior of the intrinsic MOS is de-
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Fig. 9. (b) Saturation current to source transconductance ratio versus drain current measured from weak to strong inversion.

scribed by the variation of the total charges Q¢, Or
and Q;n, stored respectively on the gate, in the bulk
and in the channel. These charges are obtained by in-
tegration along the channel from source to drain:

L
Qinv = W/ Q;nv(x)'dx
0
W2 ‘ n Yo ’
= - I“.f[gmmwfdwh(n>
D Vs
L
Op = W~/0 Ql(x)-dx
w2 n Yo ' ’
= - I“ QL0 AV @3)
D Vs
QG = _‘Qinv - QB - Qo.r (44)

where Eqn. 19 has been used to express dx in terms
of Ip, Q!,,, and dV,;. The medium frequency quasi-

static variations of the previously defined charges can
be modelled by the simple circuit presented in Fig. 10.
In addition to the gate, source and drain transconduc-
tances accounting for the low-frequency variations of
the drain current, the equivalent small-signal circuit of
Fig. 10 includes five different capacitors modeling the
transient currents at each terminal of the device that
are necessary to change the global charges Q¢g, Op
and Qinv~

Since the charge stored on the gate is totally iso-
lated from the conducting channel, capacitances be-
tween the gate and the other terminals are preferably
defined using the variation A Q¢ of this charge with re-
spect to variations of the terminal voltages AVs, AVp
and AVp:

C.. = _Adg - _ 99
N AVg aVS V6.Ve.Vp
A 9
Cu = 290 __ 2% (45)
£ AV, v,
D O 'vs.Vs. Vs
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Fig. 10. Medium frequency small-signal equivalent circuit.

_AQc _ 306
AV

Cop = (46)

Vs Vo.Vs.Vp

Cgp can equivalently be defined in terms of Cy and
Cyq by considering that an increase of the bulk voltage
with respect to an external potential is equivalent to
a simultaneous decrease of the gate, source and drain
voltages, keeping the bulk voltage constant. The gate
charge variation for AVg = AVg = AVp = —AVpis
then given by:

00
AQg = (Cgs+cgd_ a_VGG . V>.AVB (47)
B-YS. YD
and thus:
90¢
C,, = —Cos — Cou
* 2
1 0
_ 1 9% — Cpy — Coa (48)
n davp Ve.Vs.Vp

In a similar way, the bulk-to-source and bulk-to-drain
capacitances are defined by considering a variation
AQp of the bulk charge due respectively to a varia-
tion of the source voltage A Vs and of the drain voltage
AVDI

AQs 305
Cps = — =T 7
AV Vs lvvpv
AQ a0
Cot = — o = — —2 (49)
AVp Vo v, vy.vs

A detailed quasi-static analysis shows that the pre-
viously defined capacitances are non-reciprocal and
therefore that Cy; # Cy. This means that in gen-
eral the charge variation occurring at node & due to a
change of voltage at node [ is not equal to the varia-
tion of charge at node / due to a change of voltage at
node k. To take this non-reciprocity into account, the

equivalent model of Fig. 10 should be completed by five
transcapacitances, accounting for the currents flowing
in the channel due to a variation of the division of the
global inversion charge between source and drain. In
strong inversion, two of the transcapacitances are zero
and the three remaining are connected between source
and drain and are proportional to the time derivatives of
voltages Vg, Vs and Vp. They can be combined with
the transconductances to make three transadmittances
proportional to their respective transconductances and
to a common factor 1 — (s - 7). From the non-quasi-
static analysis presented in section 4, it turns out that
this common term corresponds to a first order approxi-
mation of the non-quasistatic transadmittances derived
in section 4 and having the same characteristic time
constant T (equations (76), (90) and (91)). For this
reason and in order to maintain a simple model, the
transcapacitances will be ignored in this quasi-static
analysis. Their effect will be taken into account in the
more accurate non-quasi-static model presented in sec-
tion 4. Since the non-quasi-static model is derived from
transistors operating in the conduction region, it is im-
portant to notice that for Vp = Vg, all the transcapaci-
tances vanish, leaving only the transconductances and
the capacitances, as shown in Fig. 10.

A general relation between capacitances Cp and Co,
can be derived from the equivalent circuit of Fig. 10,
by first considering only the transient currents flowing
through the source and the drain terminals which are
charging or discharging the capacitances connected to
them [2][21]. Let Qg be defined as the total charge
stored on the source side of capacitances Cg, and Cp,
and Qp the total charge stored on the drain electrode
of capacitances Cgg and Cpg.

Consider now the effect of a small variation in the
gate potential, while keeping the source and drain po-
tential fixed. As illustrated in Fig. 11, a positive charge
+Cy - AV will now flow through the gate electrode
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Fig. 11. Effect of a gate potential variation.

AQg = (Cye+ Cpp+ Cp) AV
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Fig. 12. Effect of a bulk potential variation.

to the top plate of capacitor C,, and a negative charge
AQs = —Cg - AV will come to the bottom plate of
capacitor C,,. Therefore Cg; can also be expressed as:

AQs _ 205

= (50)
AVg Ve lv, vevp

Cgs = -

Let ’s repeat the above experiment, but this time impos-
ing a bulk voltage variation while keeping other poten-
tials constant, as illustrated in Fig. 12. Looking at the
variation of the charge stored on the source electrode
yields another definition of capacitor Cp:

AQs  3Qs
AVp Ve |y, vsvp

Chs = — G

The sum of the variations AQ s and A Qp of the source
and drain charges represent in fact the change A Q,,, of
the total inversion charge. Since the inversion charge
Q!,, in both strong and weak inversion is a function of
Vp — Vi, Qiny and therefore AQg and AQp are also
functions of Vp — Vs and Vp — Vp. Consequently,
the effect of a source voltage increase on the source
charge is equivalent to the decrease in the gate voltage
multiplied by the slope factor n:

Qs 0Qs _ 8Qs dVg _ 90s

== —-n- 22 (52
Vs Vs e ave - "V ave ©Y
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On the other hand, an increase in the bulk voltage,
keeping all other voltages constant, has the same effect
as a simultaneous decrease in the gate, source and drain
voltages, keeping the bulk voltage constant. In other
terms, the variation of the source charge due to AVp is
equivalent to a simultaneous variation AVg = AVs =
A VD = —A VBZ

90s _ 99

Ve lvg.vs.vp IV 1y, vs.vp
0
Vs lvg.vpvp

Replacing the partial derivatives by the definitions of
capacitors C,s and Cp;, given by equations (50) and
(51), and combining with Eqn. 52 leads to:

Cps=(n—1)- Cgs 54
The same relation holds for Cgy and Cpy:
Chu=(n—1)-Cyy (55)

The bulk-to-source (bulk-to-drain) capacitance is
therefore n-1 times the gate-to-source (gate-to-drain)
capacitance. Note that equations (54) and (55) were
derived only by using the equivalent model of Fig. 10
and the relation between a source charge increase due
to a source voltage variation and its equivalent gate
voltage action. Therefore equations (54) and (55) are
valid in all regions of operation. Finally, all the capac-
itances can be calculated from the partial derivatives of
the gate charge, according to equations (45), (48), (54)
and (55).

3.5. Intrinsic Capacitances in Strong Inversion

The total charge forming the channel can be calculated
using equations (13) and (42):

4 i+ iy i+
Qiny=-n-Ur - Cor - 7 - ——=—7=—  (36)
3 Jir+ Vi
where C,, is the total gate capacitance given by:
Cox=W-L-C,, (57)

ir and i, are the normalized currents which in strong
inversion are given by:

. Ve — Vs\*
io= (22 1S
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Ve —Vp\’
i = (_P_D) (58)
2Ur

The total bulk charge obtained from Eqn. 43, can be
expressed in terms of Q;,, as follows:

n—1
Qp=—y Co-vW¥+ VP'_T'Qinv (59

Using charge neutrality, the total gate charge is simply
given by:

1
QG=V'Cnx'VWO"“VP_;'QMU_QOX (60)

Differentiating Eqn. 60 with respect to Vs, Vp and Vp
leads to the expressions for the intrinsic capacitances
in strong inversion:

00¢
Cosmstrong = — ==
gs—strong Vg V. V. Vp
) .
_ cnx~—-[1“—lr——7} 61)
3 (Vi + V)
a0¢
C —Stros =~
gd—strong aVp V. Vp. Vs
, .
_ C(,x-—'[“%} (62)
L Wrevi)
1 8Q¢
Cob—strong = —+ —— Tt
gb—strong no Ve |y, vevy ’ :

= C()x '

n——l.|:1_ i if.irzjl(ﬁ?))
s )

Note that Eqn. 63 has been obtained by considering the
slope factor n as being constant.

The bulk-to-source and bulk-to-drain intrinsic ca-
pacitances in strong inversion are given by equa-
tions (54) and (55).

3.6. Intrinsic Capacitances in Weak Inversion

The total inversion charge can easily be calculated us-
ing equations (17) and (42):

K, o
Qiny = ~Cor - ==+ Ur - (iy +iy)

= —Cor-n-Ur- (lf + i) (64)

where the normalized currents iy and i, are given by:

Vp—Vg
lf = e Ur

VPAVD
i, = e Ut 65)

In weak inversion the surface potential is given by
Eqn. 15 and so is constant from source to drain. The
total bulk charge is simply obtained by multiplying the
charge per unit area by the gate surface and replacing
\IJX by \IJO —+ VPI

QB=—V'C0X'V\IIO+VP (66)

The total charge stored on the gate is obtained from
Eqn. 44:

QG = V'Cnx ’\/\IJO+VP - Qinv - an
Y Cox Y \IJO + VP - Qox (67)

where 0, = W . L - Q) . Note that even if Eqn. 67
gives a good approximation of the total charge stored
on the gate electrode, it does not accurately model the
dependence of the total gate charge on the source po-
tential in weak inversion. For this reason, it is better to
evaluate capacitances Cy; and C,y by directly using the
total charge Q;,, stored in the channel, which has been
evaluated accurately. This can be done by applying the
definition of Cy, given by Eqn. 45 to Eqn. 44:

00g
Vs

1

Cos =

V6.Ve.Vp

3Qinv

+
Vs

Ve.Vs.Vp

aQinU

s Ty

(68)

V6.Va.Vp

Introducing the relation between Cg, and Cy, given by
Eqn. 54 leads to the following:

I 90
Cgsteak = - &
no Vs v, v,
Ky . .
= Copx - ﬁ clp = Cox - ly (69)

where Eqn. 26 has been used for K.
Similarly the gate-to-drain capacitance in weak in-
version is given by:

ng—weak = Cox Iy (70)
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Fig. 13. Intrinsic capacitances model for interpolation.

The gate-to-bulk capacitance is calculated from the to-
tal charge stored in the bulk Qg and is given by:

- 1 930
Cgh—weak = Cbg—weak = - v
n Ve Vp.Vs.Vp

n—1
- 'Cox (71)
n

All the intrinsic capacitances are summarized in Ta-
ble 4. After having calculated the intrinsic capacitances
versus iy and i,, an interpolation function that relates
weak to strong inversion will be derived.

3.7. Interpolation of the Intrinsic Capacitances

To interpolate the intrinsic capacitances from weak to
strong inversion, it is assumed that they can be mod-
elled by connecting two capacitors Csrone and Cyeax
in series as presented in Fig. 13. Each of these capac-
itor represents the asymptotic behavior of weak and
strong inversion, but only Cy.q is used to interpolate
between these asymptotes, using the transconductance
interpolation function given by Eqn. 39.

The expressions for the interpolated intrinsic capac-
itances are given by:

Lo ]“
ngs.(l.fv ir) Cgsw(if)

Cu = o | s+ — ]_1
T o ngs(irv if) Cgsw(ir)

n—1
Cgbzcnx' n

] l:l _ cgbs(.if"ir) : Cgbw(i}.‘a lr) ] 72)
Cobs(ify i) + Copw (i, ir)

Cgs = Coy - [
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where:
Gp i) 2 | iy
ssUr lp) = — - -’
Cass\Uf 3 (\/;—*_ mz
Cosw (l,‘) = if . G(lf) (73)
- 2 T i
Cops(if, i) = = []_{_2,___
- (Vi + Vi)’
f r

o~

i1 - Glip) +ir - Giy) (74)

and where G (i) is given by Eqn. 39.

The five interpolated intrinsic capacitances normal-
ized to C/, are plotted in Fig. 14a) versus the gate
voltage in conduction (Vp = 0 V) and in saturation
(Vp = 2 V). Fig. 14b) shows the same normalized
capacitances plotted versus the drain voltage in mod-
erate inversion (Vg = 0.8 V) and in strong inversion
(Vg = 2.4 V). In both cases, the source voltage has
been set to zero. These plots are in good accordance
with the results presented in {1] and [22].

Cebw (ij" lr) =

3.8. Experimental Results

The intrinsic capacitances in saturation have been mea-
sured versus the gate voltage for Vs = 0 and 2 V and
are presented in Fig. 15 a). They are compared to the
analytical expressions given above, where the normal-
ized current was evaluated from the gate voltage using
the large-signal equations (8) and (31). Capacitance
Cyps could not be measured, but the predicted behavior
is in accordance with the experimental data presented
in reference [22]). Fig. 15 b) illustrates the variation
of the gate-to-source capacitance with the current as
predicted by Eqn. 72.

In addition to the intrinsic capacitances, there are
also some extrinsic capacitances due to the source and
drain junctions and to the overlap of the gate on the
source and drain diffusions [1].

4. A First-Order Non-Quasi-Static Model

It can be shown that the model derived in section 3
is only valid for frequencies much smaller than wy/6
where wy is the transition frequency, given by [1]:

— I’Lll
wo = E
For frequencies above wy/6, a non-quasi-static ap-
proach is needed. Note that because wy is inversely

(VP = Vs) (75)
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Table 4. Normalized intrinsic capacitances.

Normalized | Weak Inversion Strong Inversion
Capacitances Conduction | Forward Saturation
C,/C, i 2.1 - —t 2
gs/ x f 3 [ ( «/;"' J:T) :l \ 3
Cea/Co ir 2ol —L— ~0
gd / x 3 |: ( ﬁ-’- \/:)2:| l
Cbx/cox (n - 1) ' Cgs/Cox
Cpa/Cox n—-1)- ng/cox
1 —1 4 figir —1
we | ' Rl F

proportional to the square of the transistor length, this
limit can appear quite rapidly for very long transis-
tors. Beyond this limit, a non-quasi-static approxima-
tion is necessary to take into account the effects of a
distributed time constant, also known as “transmission
line effects” A first order non-quasi-static model can
be obtained from the equivalent circuit of Fig. 10 by re-
placing the transconductances by appropriate transad-
mittances. In order to derive these transadmittances,
the MOS transistor can be split into a series of elemen-
tary transistors sufficiently small that they all operate
in conduction and in a quasi-static mode. Since the
transcapacitances are negligible in conduction, the ele-
mentary transistors can be replaced by the quasi-static
model presented previously. The corresponding small-
signal circuit is shown in Fig. 16 and corresponds to a
non-uniform multilayer distributed RC line [23].

Each elementary capacitor of the small-signal circuit
introduces a pole in the gate transadmittance Y. If
the section becomes infinitesimal, the transadmittance
is made of an infinite number of different negative real
poles distributed along the real axis as a function of the
spatial distribution of the elementary resistances and
capacitances along the channel:

Alp

AVe AVp=AVs=0
gmg

e, Q+s-1)

8mg
I+s5-1

Yy g

[il¢

(76)

where g, depends on i; and i, and is given by Eqn. 36.

A first order approximation of the transadmittance
can be made by assuming that the poles introduced by
each elementary capacitance have only minor effect
and therefore can be superimposed separately taking
into account their non-uniform spatial distribution. The
time constant associated with an elementary section
can be calculated using the zero-value time constant ap-
proximation [24] on the circuit of Fig. 17, where C” (x)
represents the total capacitance between the channel
and the ground of one elementary section. Note that
C”(x) is in capacitance per unit length and depends on
the position x along the channel.

The conductance seen by the capacitance C”(x) is
the sum of the drain and the source transconductance
of transistors Ty and T5:

g(x) = Zmdl +gm.s"2
=Q‘1-G(i )+E-G(z‘ ) 77
UT rl UT f2
where:
Int = 2-n-B1-Uf-ip(x)
, . w
=2.n.ﬂn.cax.(j;.,(x)._x_ (78)
I;, = 20 B U -ipp(x)
=2-n-un-C;X-U%-i(x)-L_x (79
ir(x) = ip(x) =i(x) (80)



Analytical MOS Transistor Model 101

—VD=OV -—-VD=2V VS=OV
0.7
w - e
8 Pt T
c 06} e T
®© Ces ,
= )
% 051 I/ Cgs & ng
=3 1
(& l’
o 04 !
S '
£ :
= 03 y
£
B oo T
N % M T T
©
€ o01F I\ TTTmmeeee_____
- 1 ¥\ 0 TTTEIE===~l,  Toa ____--
[e) =77
Z | i ~ »I” T it

O'%.O Of5 11.0

} ]
15 20 25 30 35 40 45 50
Ve [V]

Fig. 14. (a) Calculated normalized capacitances versus Vg.

Substituting equations (78) to (80) into Eqn. 77 leads
to:
1 x-(L—

R(x) = = ( x) 7

g(x) 2-n-W-L-p,-C, . -Ur

1
i-G@)
The capacitance C”(x) is simply the sum of the gate-
to-drain and drain-to-bulk capacitances of transistor T;
and the gate-to-source and source-to-bulk capacitances
of transistor T, all evaluated at ify = i;] = i(x):
2-i-G()

C"(x):Z-n-W-C;x'm (82)

81

The first order time constant is obtained by summing
all the elementary time constants R(x) - C”(x) along
the channel:

L
7= f R(x)-C'(x)-dx (83)
0

Introducing the relation existing between the normal-
ized current {(x) and the position in the channel given
in Appendix A3 (Eqn. A.10) leads to:

_ 2w if(if—i)'(i_ir)..
T_(if—z',)3/,, vz 60 4™

where:
LZ
- 2. Hn UT

This integral expression of T depends only on the nor-
malized forward and reverse currents i; and i, of the
transistor and therefore is valid for all modes of op-
eration. Unfortunately, it cannot be integrated analyti-
cally, but it has been integrated numerically and plotted
versus the inversion factor iy in Fig. 18 for different
o = i, /iy ratios. Fig. 18 shows that 7 is constant and
independent of the mode of operation of the transistor
in weak inversion and decreases with 1/ \/Z; in strong
inversion with a slight dependence on the « ratio. The

70 (85)
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integral can be simplified in the asymptotic case of
weak inversion where if, i, and i can be assumed to be
much smaller than 1:

2-1 /'A-” .
rx =2 -0
Gr—i? S,

.. . o
. — 1) d = —
(i —1i)-di

(weak inversion) (86)

This corresponds to the value obtained for the base
transit time of a bipolar transistor [25]. An equivalent
approximation can be made to find the asymptotic value
in strong inversion where iy and i, are much larger
than 1:

T

~ T Yip—i)-(—i) .
; —i)? / Vi !

Vp [V]

Fig. 14. (b) Calculated normalized capacitances versus Vp.

4 i3+

.
5 (i i)

(strong inversion) &7

Note that 7 reduces to 79/6 in conduction (ir = i)
which can also be obtained by expanding the hyperbolic
functions obtained in the case of a uniform transmission
line [23]. In saturation (i, = 0), the time constant
corresponds to the results obtained by Tsividis [1] and
Khorramabadi [26].

To obtain an approximation of the time constant that
is valid in all modes of operation, the curves of Fig. 18
can be fitted by the following simple function:

T 1 1
e (88)

To 3 ,/l—l-l.f/l'k
where:
, [4 l+3~ﬁ+a]2
g = |- ——————| and
5 (1+Ja)?
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Fig. 15. (a) Intrinsic capacitances normalized to C,, in saturation versus the gate voltage for Vs =0and 2 V.
o = ‘_r (89) shown in Fig. 19. This model can still be improved

The maximum fitting error obtained from Eqn. 88 in
strong inversion is typically less than 2%. The same
time constant can be used for the source and drain
transadmittances:

Alp
AVs

AVs=AVp=0

gms
= —— 90
1+s-71 (00)
Alp
AVp

AVg=AVs=0

Emd
= 91
T2 2

where g5 and g,,4 are given by Eqn. 36 and 7 is given
by Eqn. 88.

The complete high-frequency small-signal model is
then simply obtained by replacing the transconduc-
tances by the previously defined transadmittances as

for higher frequency by changing the intrinsic capaci-
tances with more complex admittances as described in

[1] and [22].

5. Thermal Noise Model

5.1. General Expression of the Thermal Noise
Power Spectral Density

A general expression for the thermal noise Power Spec-
tral Density (PSD) can be established by first consid-
ering an elementary section of the channel of length
dx having a resistance d R. This resistance produces a
noise voltage dV,;, which has a PSD given by:

dSav, =4-k-T-dR (92)
where:

_ dVCh _ dx
Iy W (0L

dR (93)
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Fig. 15. (b) Normalized intrinsic gate-to-source capacitance in saturation versus the drain current for Vg = 0 and 2 V.

The PSD of the drain current fluctuation due to this lo-
calized noise voltage source is obtained by multiplying
dSav,, by the square of the local channel conductance
gcr defined as:

S
Leading to:
dSar, = 8% - dSav,

=4k T T3 W-(=Qp)-dx  (99)

Integrating from source to drain gives the total PSD of
the drain current fluctuations which can be expressed
in terms of a thermal noise conductance G y;:

SA,,, =4.k-T- -Gpp (96)
L
"
Gth = L_;W/(; _‘Q;nv’dx
= 0l ©7)

L2

Eqn. 97 shows that the current fluctuation PSD is pro-
portional to the total charge stored in the channel. This
is true in strong inversion as well as in weak inver-
sion. The thermal noise can be modelled as a current
source between source and drain having a PSD given
by Eqn. 96. In saturation, it can also be referred to the
gate as a voltage source having an equivalent thermal
noise resistance given by:

Nt :
Rym = —= (saturation) (98)
mg

It can now be expressed in terms of the normalized
currents by using the total channel charge already cal-
culated for the intrinsic capacitances.

5.2. Thermal Noise Power Spectral Density (PSD)
in Strong and in Weak Inversion

The total channel charge in strong inversion is given by
Eqn. 56 and the corresponding thermal noise conduc-
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Fig. 16. Small-signal equivalent circuit of the distributed MOS transistor.
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Fig. 17. Eguivalent circuit to calculate the time constant of one
elementary section using zero-value time constant approximation.

tance is given by:

4
nep U
if + iy O+
Vir + i

8ms for: if =i, (Vp= Vs)
2. gms for:if > i, (Vp > Vs)
Eqn. 99 shows that the noise conductance is propor-
tional to the source transconductance. The equivalent
noise resistance in saturation is given by:
2

3 8mg

Gth—strong

99

(saturation) (100)

Ryn —strong —

1
3
T
- A1
%0
—— a = 0 (saturation)
-—— o = 0.79 (conduction) “~
...... fitting (saturation) )
01 1 L 1
.01 A 1 10 100
weak inversion ] strong inversion

i
Fig. 18. Normalized transadmittance time constant versus the inver-
sion factor i for different @ = i, /iy ratios.

The thermal noise conductance and equivalent noise
resistance in weak inversion are derived from Eqn. 64:

GNih—weak = N+ ,B -Ur - (lf + i)

_ { 8ms for: if =i, (Vp=1Vs)

101
s for: iy > i, (Vp>» VS)( )
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Fig. 19. Complete high-frequency small-signal model.

Ryth—weak = (saturation) (102)

n
2- 8mg

In weak inversion, the PSD can also be written by re-
placing the normalized forward and reverse currents
appearing in Eqn. 101 by their definitions iy = Ir/Is
andi, = Ig/Iswith Is=2-n-B-U2:

SAID = 4kT’lﬁ

Ip + I

Uy —— TR
"2 B U2

=2-q-(Ur+1g) (103)
Eqn. 103 corresponds to full shot noise of both the
Sforward and the reverse components [27].
5.3. Interpolation of the Thermal Noise PSD from

Weak to Strong Inversion

The thermal noise PSD can also be interpolated from
weak to strong inversion using the following function:

Gy 1
8ms 1+if
l+a 2, 1+Ja+a
. —'l b ———————
2 "3 Tt e
where: o = - (104)

ly

Eqn. 104 is plotted in fig. 20 versus if for different val-
ues of o ranging from O (saturation) to 1 (conduction).
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6. Second-Order Effects

6.1. Mobility Reduction Due to Vertical Field

The effective mobility taking into account the effect of
the normal field is defined as:
_ M
1+6-Vp

where parameter 6 typically ranges between 0.1 and
0.5 V~'. From the definition of ./ it can be noticed
that the mobility decreases for an increase in the gate-
to-bulk voltage and is independent of the source-to-
bulk voltage.

Meff = (105)

6.2. Velocity Saturation

The effect of velocity saturation tends to reduce the
saturation current with respect to the Vpg voltage ac-
cording to [1]:

Ipg
where:

Ip —

V-V,
14+ 2=
L-Ec

Vb

VDsat for: VD = VDsat

for: VD < VDsat (106)

ng{

where Ipy is the current evaluated without velocity sat-
uration, Vp,,, is the value of Vp where the current
takes its maximum and E. is the critical field [1]. As
shown in Fig. 21, the effect of velocity saturation is
to reduce the initial current calculated without velocity
saturation and particularly the saturation current ob-
tained for Vp > Vp. Introducing this effect accord-
ing to Eqn. 106 while keeping Vp as the drain satu-
ration voltage would produce an undesirable bump at
Vb = Vpsar. This can be avoided by simply clamping
the drain voltage at a certain value Vpg,, for which the
current is maximum, as shown in Fig. 21. The value of
this new saturation voltage Vp,,, is obtained by calcu-
lating the derivative of Eqn. 106 and solving it with re-
spect to Vpp taking into account the critical field E. and
the transistor length L. Note that the clamping of Vp
should be made smoothly in order to have continuous
derivatives and thus continuous output conductance.
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6.3. Channel Length Modulation and Output Con-
ductance

Although channel shortening is a very complicated
phenomenon, involving two-dimensional analysis, it
can be illustrated as follows: when Vp becomes equal
to Vp, the channel is pinched-off just at the drain diffu-
sion limit. When Vp > Vp, the pinch-off point moves
towards the source, reducing the channel length by AL.
The inversion charge between this point and the drain is
nearly zero and therefore this region can be considered
as a depletion region. The channel length reduction
AL can then be approximated by [1]:

AL Z ¢-/Vp—Vp

for: Vp > Vp (107)
where:
. 2.g,
p= 28 ° (108)
Y- C(/,x q - Nsup

Correcting the drain current in the saturation region
according to Eqn. 107 yields the output characteristics
shown in Fig. 22a). Clearly, these are not satisfactory
for small-signal analysis since the output conductance
suffers from strong discontinuities. The latter charac-
teristic is currently improved by:

a) using V., instead of Vp inEqn. 107, where V.
is obtained by evaluating the gap between the 2
values of Vp for which the drain-to-source con-
ductance 1is the same (see Fig. 22a));

b) smoothing the function AL(Vp — Vj,_..) around
Vp — V[/).var'

A qualitative representation of the obtained character-
istics is depicted in Fig. 22b).

The final evaluation of V;,_,, also takes into account
the velocity saturation desctibed previousty.

A default evaluation of channel length modulation
parameter ¢ can be performed from the value of process
parameters y and C . It may be further used as a fitting
parameter in conjunction with measured data.

6.4. Short and Narrow-Channel Effects

The modelling of short- and narrow-channel effects
is based on the charge-sharing concept. Following
the derivation presented in [1], Vp now becomes a
function of Vg, Vro, ¥, Wy and of new variable
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a(W, Vs, Vp, L, W, nr, nw), in which parameters 7,
and nw account for short- and narrow-channel effects
respectively:

Vp = Vg —Vrot+y - v¥—a-y

'|:\/VG_VTO+V'\/W__(¥)2

oy
__2_] (109)
where:
o = 1+§~{vztf v/ W + Vs
[4
_ ‘(\/\po+vs+\/%+ VD)} (110)
Less

Dimensionless parameters ny and 7, can be given de-
fault values based on known process parameters, or can
be extracted from measured data.

7. Conclusions

The symmetry of the transistor can be preserved by
referring all voltages to the local substrate. The state
of any point of the channel of a transistor is controlled
by Vp — V,;, where the non-equilibrium voltage V.,
simply called channel “potential” is produced by drain
and source voltages Vp and Vg, and Vp is the pinch-
off voltage depending only on the gate voltage V.
This state can be characterized by the degree of inver-
sion of the channel. Weak inversion for V, > Vp
corresponds to a density of mobile charge that can be
neglected in the field calculations, whereas strong in-
version for V., < Vp corresponds to a large density
of mobile charge which clamps the surface potential
to a value that can be approximated as constant. The
various possible modes of operation (conduction, for-
ward and reverse saturation, weak inversion, blocked)
depend on the degree of inversion at each end of the
channel, and therefore on Vp — Vs and Vp — Vp, (Fig. 6).

Using the charge sheet model with the assumption of
constant doping in the channel, the drain current I, can
be expressed as the difference of a forward component
I and areverse component I (Fig. 7). Each of these is
proportional to a function of Vp — Vs, respectively Vp —
Vb, through a specific current I given by Eqn. 25. This
function is exponential in weak inversion and quadratic
in strong inversion (Eqn. 29). It can be continuously
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Fig. 22. Channel length modulation effect: (a) Eqn. 107 with Vs = Vp.

interpolated in between (Eqn. 30). Ip(Vp, Vg, Vp)can
thus be expressed from very low to high currents by
means of a single parameter /5.

Describing Ip(Vg, Vs, Vp) requires as additional
parameters the threshold Vr¢, and in a first approxi-
mation the slope factor n (Eqn. 11). For better preci-
sion, the value of n can be adapted to Vi (Eqn. 10)
or the complete expression of Vp(Vys) (Eqn. 7) can
be used, requiring two additional parameters, y (bulk
modulation factor) and Wy (surface potential in strong
inversion for Vp = Vs = 0), for a total of only four
parameters.

The small-signal model is directly obtained by differ-
entiation (Eqn. 38); the resulting transconductance is
continuous from weak to strong inversion and is within
10% of exact calculations and experimental data. A
better precision of 3% is obtained with another inter-
polation for the transconductance (Eqn. 39), which can
then be integrated to obtain the corresponding large-

signal interpolation function (Eqn. A3).

A simple quasi-static small-signal model is obtained
by adding five intrinsic capacitors. Each of them is
proportional to a function of Ir/Ig and Ig/Is through
a single additional parameter, namely the gate oxide
capacitance C,, (Table IV). This model is valid for
frequencies much lower than the transition frequency
of the transistor given by Eqn. 75. Higher frequencies
may be treated with a first-order non quasi-static model
(equations (88) to (91)) which does not require any
additional parameter.

Thermal noise is proportional to the total charge in
the channel and can be expressed continuously from
weak to strong inversion without any new parameter
(Eqn. 104).

Second order effects like mobility reduction, veloc-
ity saturation, channel length modulation and short and
narrow channel effects are added on top of the basic
model and are included in the complete formulation
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Fig. 22. Channel length modulation effect: (b) improved transition from conduction to saturation with VI/)

for computer simulation, which is already available
with several commercial circuit simulation programs.
This model has only 9 physical parameters (COX, VTO,
GAMMA, PHI, KP, THETA, UCRIT, DW, DL), 3 fine tun-
ing fitting coefficients (LAMBDA, WETA, LETA) and 2
additional temperature parameters.

8. Notice

Further information concerning the model formulation
for computer simulation is available from:

Prof. Christian C. Enz

EPFL

Electronics Laboratory (LEG)
ELB Ecublens

CH-1015 Lausanne
Switzerland

sat < VP‘

9. Appendix

Al. Derivation of the Large-Signal Interpolation
Function Corresponding to Eqn. 39

The relation between the normalized voltage v =
v, — v (respectively v, — v,y) and the normalized cur-
rent iy (i) can be derived from the definition of the
transconductance interpolation function G (i) given by
Eqn. 39 and from the definition of transconductances
and Eqn. 36:

J diy irt 3 ir+1
v = - — = .
ir-Gliy) iy

and so:

iy (A1)

(A2)

/ ir+5-ir+1
V= 'dlf

iy
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Performing the integration gives the large-signal inter-
polation function corresponding to Eqn. 39:
v = Iln(O+2-(Vr—1 =2
(fi +4- (ST 1))
-In +

1
8 2

.zn(1+4'(‘sﬁ+ﬁ)) (A.3)

where:
1
r=i+5-ﬁ+1 (A4)

Variables v and i are either equal to v, — v, and iy,
or v, — vy and i,. The interpolation function given by
Eqgn. A3 has the same asymptotes as Eqn. 29, but it can
unfortunately not be inverted to express the current as a
function of the voltage as required in circuit simulators.
Nevertheless, it can easily be tabulated and interpolated
using Lagrangian polynomials.

A2. Exact Calculation of the Normalized Transcon-
ductance from Weak to Strong Inversion

The source transconductance can be expressed in terms
of the inversion charge Q] by differentiating Eqn. 20
with respect to Vs:

. (—Q;‘nv)
C’

ox

8ms = B (A.5)

Introducing Eqn. A5 in the expression of the transcon-
ductance interpolation function given by Eqn. 36 leads
to:

Ems * Ur _ 1 . (_Q;nu)
IF 2'Il'l'f UT'CZH

Glif) = (A.6)

where the forward normalized current iy can be calcu-
lated by:

. Ir
o= F
I = 208 U2

1 ® (-0
f Qi) - dvg, where:

T2 ), Ur-C,
Vch VS
y = —, U = —— A7
Ui U, vy U (A7)

Combining equations (A6) and (A7) leads to:

S )
Ur-Cyy

Gv) = (A-8)

voro (l;fé",’,v,) : deh
This equation can be evaluated numerically for differ-
ent parameters ¥ and Vgg. The result of this numer-
ical calculation is plotted in Fig. 8 for y = 14/V and
Viep = —0.96 V corresponding to Vyg = 0.6 V.

A3. Channel Potential Versus Position

Having defined an interpolation function, it can be used -
to evaluate the non-equilibrium voltage V., along the
channel from source to drain. Integrating the drain
current from the source to an intermediate point x along

the channel results in:
= [_ ;,,,,<V>] v
Vs Ccl)x

=Ir(Vp.Vs)

°° Q;nv(v)]
—B. _Zimw T gy
P /vmm [ Cox

~

=1 (Vp.Ven)

=X(1p — 1) (A9)

where V,;,(x) is the value of the channel potential at
point x. The current I, represents the drain current of
a transistor working in the saturation region and having
Ven(x) as source voltage. The corresponding normal-
ized current i, can thus be written as:

Ap = B-

~ =

. . x .
lx(vp_vch) = lf"z"d

= i - % g — i) (A.10)
Eqn. A10 can be inverted using the interpolation func-
tion given by the inverse of Eqn. 30, in order to express
the channel voltage as a function of position along the
channel for a given value of the forward and reverse
normalized currents (depending on the terminal volt-
ages):

Ven(x) = Vp—2-Ur

n [ev"f—%"'f—"') - 1} (A11)

Notice that a more accurate expression could be derived
by using Eqn. A3 instead of the inverse of Eqn. 30.
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